Resource-efficient equivariant quantum convolutional neural networks
- URL: http://arxiv.org/abs/2410.01252v1
- Date: Wed, 2 Oct 2024 05:51:33 GMT
- Title: Resource-efficient equivariant quantum convolutional neural networks
- Authors: Koki Chinzei, Quoc Hoan Tran, Yasuhiro Endo, Hirotaka Oshima,
- Abstract summary: This study proposes a resource-efficient model of equivariant quantum convolutional neural networks (QCNNs) called equivariant split-parallelizing QCNN (sp-QCNN)
Using a group-theoretical approach, we encode general symmetries into our model beyond the translational symmetry addressed by previous sp-QCNNs.
Our results contribute to the advancement of practical quantum machine learning algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Equivariant quantum neural networks (QNNs) are promising quantum machine learning models that exploit symmetries to provide potential quantum advantages. Despite theoretical developments in equivariant QNNs, their implementation on near-term quantum devices remains challenging due to limited computational resources. This study proposes a resource-efficient model of equivariant quantum convolutional neural networks (QCNNs) called equivariant split-parallelizing QCNN (sp-QCNN). Using a group-theoretical approach, we encode general symmetries into our model beyond the translational symmetry addressed by previous sp-QCNNs. We achieve this by splitting the circuit at the pooling layer while preserving symmetry. This splitting structure effectively parallelizes QCNNs to improve measurement efficiency in estimating the expectation value of an observable and its gradient by order of the number of qubits. Our model also exhibits high trainability and generalization performance, including the absence of barren plateaus. Numerical experiments demonstrate that the equivariant sp-QCNN can be trained and generalized with fewer measurement resources than a conventional equivariant QCNN in a noisy quantum data classification task. Our results contribute to the advancement of practical quantum machine learning algorithms.
Related papers
- Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz [0.8192907805418583]
Quantum-Train (QT) is a hybrid quantum-classical machine learning framework.
It maps quantum state measurements to classical neural network weights.
Traditional QT framework employs a multi-layer perceptron (MLP) for this task, but it struggles with scalability and interpretability.
We introduce a distributed circuit ansatz designed for large-scale quantum machine learning with multiple small quantum processing unit nodes.
arXiv Detail & Related papers (2024-09-11T03:51:34Z) - The role of data embedding in equivariant quantum convolutional neural
networks [2.255961793913651]
We investigate the role of classical-to-quantum embedding on the performance of equivariant quantum neural networks (EQNNs)
We numerically compare the classification accuracy of EQCNNs with three different basis-permuted amplitude embeddings to the one obtained from a non-equivariant quantum convolutional neural network (QCNN)
arXiv Detail & Related papers (2023-12-20T18:25:15Z) - Approximately Equivariant Quantum Neural Network for $p4m$ Group
Symmetries in Images [30.01160824817612]
This work proposes equivariant Quantum Convolutional Neural Networks (EquivQCNNs) for image classification under planar $p4m$ symmetry.
We present the results tested in different use cases, such as phase detection of the 2D Ising model and classification of the extended MNIST dataset.
arXiv Detail & Related papers (2023-10-03T18:01:02Z) - Splitting and Parallelizing of Quantum Convolutional Neural Networks for
Learning Translationally Symmetric Data [0.0]
We propose a novel architecture called split-parallelizing QCNN (sp-QCNN)
By splitting the quantum circuit based on translational symmetry, the sp-QCNN can substantially parallelize the conventional QCNN without increasing the number of qubits.
We show that the sp-QCNN can achieve comparable classification accuracy to the conventional QCNN while considerably reducing the measurement resources required.
arXiv Detail & Related papers (2023-06-12T18:00:08Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Theory for Equivariant Quantum Neural Networks [0.0]
We present a theoretical framework to design equivariant quantum neural networks (EQNNs) for essentially any relevant symmetry group.
Our framework can be readily applied to virtually all areas of quantum machine learning.
arXiv Detail & Related papers (2022-10-16T15:42:21Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.