論文の概要: ADEPT-Z: Zero-Shot Automated Circuit Topology Search for Pareto-Optimal Photonic Tensor Cores
- arxiv url: http://arxiv.org/abs/2410.01313v1
- Date: Wed, 2 Oct 2024 08:09:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:49:06.915376
- Title: ADEPT-Z: Zero-Shot Automated Circuit Topology Search for Pareto-Optimal Photonic Tensor Cores
- Title(参考訳): ADEPT-Z:Pareto-Optimal Photonic Tensor Coreのゼロショット自動回路トポロジー探索
- Authors: Ziyang Jiang, Pingchuan Ma, Meng Zhang, Rena Huang, Jiaqi Gu,
- Abstract要約: フォトニックテンソルコア(PTC)は、光学人工知能(AI)アクセラレーターにとって不可欠なビルディングブロックである。
より柔軟で効率的な多目的進化的トポロジ探索フレームワークADEPT-Zを提案する。
- 参考スコア(独自算出の注目度): 10.23290448364426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photonic tensor cores (PTCs) are essential building blocks for optical artificial intelligence (AI) accelerators based on programmable photonic integrated circuits. Most PTC designs today are manually constructed, with low design efficiency and unsatisfying solution quality. This makes it challenging to meet various hardware specifications and keep up with rapidly evolving AI applications. Prior work has explored gradient-based methods to learn a good PTC structure differentiably. However, it suffers from slow training speed and optimization difficulty when handling multiple non-differentiable objectives and constraints. Therefore, in this work, we propose a more flexible and efficient zero-shot multi-objective evolutionary topology search framework ADEPT-Z that explores Pareto-optimal PTC designs with advanced devices in a larger search space. Multiple objectives can be co-optimized while honoring complicated hardware constraints. With only <3 hours of search, we can obtain tens of diverse Pareto-optimal solutions, 100x faster than the prior gradient-based method, outperforming prior manual designs with 2x higher accuracy weighted area-energy efficiency. The code of ADEPT-Z is available at https://github.com/ScopeX-ASU/ADEPT-Z.
- Abstract(参考訳): フォトニックテンソルコア(PTC)は、プログラマブルフォトニック集積回路に基づく光人工知能(AI)アクセラレーターに必要なビルディングブロックである。
現在、ほとんどのPTC設計は手動で設計されており、設計効率は低く、ソリューションの品質は満足できない。
これにより、さまざまなハードウェア仕様を満たし、急速に進化するAIアプリケーションに追いつくことが困難になる。
それまでの研究では、優れたPSC構造を異なる方法で学習するための勾配に基づく手法が検討されてきた。
しかし、複数の非微分不可能な目標と制約を扱う場合、トレーニング速度の遅さと最適化の難しさに悩まされる。
そこで本研究では,よりフレキシブルで効率的な多目的進化的トポロジ探索フレームワークADEPT-Zを提案する。
複雑なハードウェア制約を尊重しながら、複数の目的を協調最適化することができる。
3時間以内の探索で、従来の勾配法よりも100倍高速な数十種類のパレート最適解を得ることができ、2倍精度の重み付き面積エネルギー効率で以前の手動設計より優れる。
ADEPT-Zのコードはhttps://github.com/ScopeX-ASU/ADEPT-Zで公開されている。
関連論文リスト
- Automated and Holistic Co-design of Neural Networks and ASICs for Enabling In-Pixel Intelligence [4.063480188363124]
放射能検出のための可読ASICなどの極端エッジAIシステムは、厳密なハードウェア制約の下で動作しなければならない。
理想的なソリューションを見つけることは、爆発的に拡張されたデザイン空間から最適なAIとASIC設計の選択を特定することを意味する。
論文 参考訳(メタデータ) (2024-07-18T17:58:05Z) - Real-Time Image Segmentation via Hybrid Convolutional-Transformer Architecture Search [49.81353382211113]
マルチヘッド自己認識を高分解能表現CNNに効率的に組み込むという課題に対処する。
本稿では,高解像度機能の利点をフル活用したマルチターゲットマルチブランチ・スーパーネット手法を提案する。
本稿では,Hybrid Convolutional-Transformer Architecture Search (HyCTAS)法を用いて,軽量畳み込み層とメモリ効率のよい自己保持層を最適に組み合わせたモデルを提案する。
論文 参考訳(メタデータ) (2024-03-15T15:47:54Z) - TeMPO: Efficient Time-Multiplexed Dynamic Photonic Tensor Core for Edge
AI with Compact Slow-Light Electro-Optic Modulator [44.74560543672329]
我々は,TMPOと呼ばれる時間多重化動的フォトニックテンソルアクセラレータを,クロス層デバイス/回路/アーキテクチャのカスタマイズにより提案する。
我々は,368.6TOPSピーク性能,22.3TOPS/Wエネルギー効率,1.2TOPS/mm$2$計算密度を実現した。
この研究は、多層共設計とドメイン固有のカスタマイズの力を示し、将来の電子フォトニクス加速器への道を開く。
論文 参考訳(メタデータ) (2024-02-12T03:40:32Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Data-Model-Circuit Tri-Design for Ultra-Light Video Intelligence on Edge
Devices [90.30316433184414]
本稿では,HDビデオストリーム上での高スループット,低コスト,高精度MOTのためのデータモデル・ハードウエア・トリデザイン・フレームワークを提案する。
現状のMOTベースラインと比較して、我々の三設計アプローチは12.5倍の遅延低減、20.9倍のフレームレート改善、5.83倍の低消費電力、9.78倍のエネルギー効率を実現でき、精度は低下しない。
論文 参考訳(メタデータ) (2022-10-16T16:21:40Z) - A Semi-Decoupled Approach to Fast and Optimal Hardware-Software
Co-Design of Neural Accelerators [22.69558355718029]
ハードウェアとソフトウェアの共同設計は、フレキシブルなデザインスペースの利点を完全に享受し、ニューラルネットワークのパフォーマンスを最適化するために現れています。
このような共同設計は、全検索空間を事実上無限大に拡大し、重大な課題を提起する。
本稿では,設計空間全体の規模を桁違いに小さくするが,最適性を損なうことなく,Emphsemi-Decoupledアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-25T21:49:42Z) - Ranking Cost: Building An Efficient and Scalable Circuit Routing Planner
with Evolution-Based Optimization [49.207538634692916]
そこで我々は、効率よくトレーニング可能なルータを形成するための新しい回路ルーティングアルゴリズム、Randing Costを提案する。
提案手法では,A*ルータが適切な経路を見つけるのに役立つコストマップと呼ばれる新しい変数群を導入する。
我々のアルゴリズムはエンドツーエンドで訓練されており、人工データや人間の実演は一切使用しない。
論文 参考訳(メタデータ) (2021-10-08T07:22:45Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
微分可能なArchiTecture Search(DARTS)は先日,ニューラルアーキテクチャサーチ(NAS)の主流になった。
暗黙の関数定理に基づいてDARTSの過次計算に取り組む。
提案手法であるiDARTSのアーキテクチャ最適化は,定常点に収束することが期待される。
論文 参考訳(メタデータ) (2021-06-21T00:44:11Z) - CompOFA: Compound Once-For-All Networks for Faster Multi-Platform
Deployment [1.433758865948252]
CompOFAは、精度レイテンシフロンティアに近いモデルに対する検索を制限します。
簡単な実験であっても、トレーニング時間の2倍の短縮とモデル探索/抽出時間の216倍の高速化を実現できることを実証する。
論文 参考訳(メタデータ) (2021-04-26T15:10:48Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
PasticineLabと呼ばれる新しい微分可能な物理ベンチマークを導入する。
各タスクにおいて、エージェントはマニピュレータを使用して、プラスチックを所望の構成に変形させる。
本稿では,既存の強化学習(RL)手法と勾配に基づく手法について評価する。
論文 参考訳(メタデータ) (2021-04-07T17:59:23Z) - Scalable Deep-Learning-Accelerated Topology Optimization for Additively
Manufactured Materials [4.221095652322005]
トポロジー最適化(TO)は、新しい構造、材料、デバイスを設計するための、人気があり強力な計算手法である。
これらの課題に対処するため、SDL-TOと呼ばれる汎用拡張型ディープラーニング(DL)ベースのToフレームワークを提案する。
我々のフレームワークは、反復履歴データを学習し、与えられた設計と勾配のマッピングを同時にトレーニングすることで、TOを加速します。
論文 参考訳(メタデータ) (2020-11-28T17:38:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。