論文の概要: Efficient $1$-bit tensor approximations
- arxiv url: http://arxiv.org/abs/2410.01799v1
- Date: Wed, 2 Oct 2024 17:56:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 15:04:32.230010
- Title: Efficient $1$-bit tensor approximations
- Title(参考訳): 効率的な1ドルビットテンソル近似
- Authors: Alex W. Neal Riasanovsky, Sarah El Kazdadi,
- Abstract要約: 我々のアルゴリズムは、20ドルの擬似符号で効率よく符号付きカット分解を行う。
オープンテキストMistral-7B-v0.1大言語モデルの重み行列を50%の空間圧縮に近似する。
- 参考スコア(独自算出の注目度): 1.104960878651584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a spatially efficient decomposition of matrices and arbitrary-order tensors as linear combinations of tensor products of $\{-1, 1\}$-valued vectors. For any matrix $A \in \mathbb{R}^{m \times n}$, $$A - R_w = S_w C_w T_w^\top = \sum_{j=1}^w c_j \cdot \mathbf{s}_j \mathbf{t}_j^\top$$ is a {\it $w$-width signed cut decomposition of $A$}. Here $C_w = "diag"(\mathbf{c}_w)$ for some $\mathbf{c}_w \in \mathbb{R}^w,$ and $S_w, T_w$, and the vectors $\mathbf{s}_j, \mathbf{t}_j$ are $\{-1, 1\}$-valued. To store $(S_w, T_w, C_w)$, we may pack $w \cdot (m + n)$ bits, and require only $w$ floating point numbers. As a function of $w$, $\|R_w\|_F$ exhibits exponential decay when applied to #f32 matrices with i.i.d. $\mathcal N (0, 1)$ entries. Choosing $w$ so that $(S_w, T_w, C_w)$ has the same memory footprint as a \textit{f16} or \textit{bf16} matrix, the relative error is comparable. Our algorithm yields efficient signed cut decompositions in $20$ lines of pseudocode. It reflects a simple modification from a celebrated 1999 paper [1] of Frieze and Kannan. As a first application, we approximate the weight matrices in the open \textit{Mistral-7B-v0.1} Large Language Model to a $50\%$ spatial compression. Remarkably, all $226$ remainder matrices have a relative error $<6\%$ and the expanded model closely matches \textit{Mistral-7B-v0.1} on the {\it huggingface} leaderboard [2]. Benchmark performance degrades slowly as we reduce the spatial compression from $50\%$ to $25\%$. We optimize our open source \textit{rust} implementation [3] with \textit{simd} instructions on \textit{avx2} and \textit{avx512} architectures. We also extend our algorithm from matrices to tensors of arbitrary order and use it to compress a picture of the first author's cat Angus.
- Abstract(参考訳): 行列と任意の階テンソルの空間的に効率的な分解を${-1, 1\}$値ベクトルのテンソル積の線型結合として提示する。
任意の行列 $A \in \mathbb{R}^{m \times n}$, $A - R_w = S_w C_w T_w^\top = \sum_{j=1}^w c_j \cdot \mathbf{s}_j \mathbf{t}_j^\top$$は$A$の符号付きカット分解である。
C_w = "diag"(\mathbf{c}_w)$ for some $\mathbf{c}_w \in \mathbb{R}^w,$ and $S_w, T_w$, and the vectors $\mathbf{s}_j, \mathbf{t}_j$ are $\{-1, 1\}$-valued。
$(S_w, T_w, C_w)$を格納するには、$w \cdot (m + n)$ bitsをパックし、浮動小数点数だけを必要とする。
w$ の関数として、$\|R_w\|_F$ は #f32 行列に $\mathcal N (0, 1)$ エントリを適用すると指数減衰を示す。
$(S_w, T_w, C_w)$が \textit{f16} または \textit{bf16} 行列と同じメモリフットプリントを持つように$w$を選択すると、相対誤差は同等である。
我々のアルゴリズムは、20ドルの擬似符号で効率よく符号付きカット分解を行う。
フリーゼとカンナンの1999年の有名な論文[1]の簡単な修正を反映している。
第1の応用として、オープンな \textit{Mistral-7B-v0.1} 大言語モデルにおける重み行列を50\%の空間圧縮に近似する。
注目すべきは、残りの226ドルの行列は相対誤差が$<6\%$であり、拡張されたモデルは {\it huggingface} のリーダーボード [2] 上で \textit{Mistral-7B-v0.1} と密接に一致することである。
ベンチマークパフォーマンスは、空間圧縮が50\%$から25\%$に減少するにつれて、徐々に低下します。
我々は,オープンソースの \textit{rust} 実装 [3] を, \textit{avx2} および \textit{avx512} アーキテクチャ上での \textit{simd} 命令で最適化する。
また、アルゴリズムを行列から任意の順序のテンソルに拡張し、それを使って最初の著者の猫Angusの画像を圧縮する。
関連論文リスト
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
この問題は通信複雑性のランダム化を$Omega(frac1kcdot n2log|mathbbF|)$とする。
アプリケーションとして、$k$パスを持つ任意のストリーミングアルゴリズムに対して、$Omega(frac1kcdot n2log|mathbbF|)$スペースローバウンドを得る。
論文 参考訳(メタデータ) (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
また、スパースリカバリ問題に対して$Omega(k2/pn1-2/p)$低いバウンダリを示し、これは$mathrmpoly(log n)$ factorまで厳密である。
論文 参考訳(メタデータ) (2024-08-16T02:33:07Z) - Provably learning a multi-head attention layer [55.2904547651831]
マルチヘッドアテンション層は、従来のフィードフォワードモデルとは分離したトランスフォーマーアーキテクチャの重要な構成要素の1つである。
本研究では,ランダムな例から多面的注意層を実証的に学習する研究を開始する。
最悪の場合、$m$に対する指数的依存は避けられないことを示す。
論文 参考訳(メタデータ) (2024-02-06T15:39:09Z) - Optimal Embedding Dimension for Sparse Subspace Embeddings [4.042707434058959]
ランダム$mtimes n$ matrix $S$は、忘れられない部分空間埋め込み(OSE)である。
mtimes n$ random matrix $S$ with $mgeq (1+theta)d$ is an oblivious subspace embedding with $epsilon = O_theta(1)$。
これを使用すれば、現在の行列乗算時間よりも早く適用できる$O(d)$埋め込み次元で、最初の難解な部分空間埋め込みを構築することができる。
論文 参考訳(メタデータ) (2023-11-17T18:01:58Z) - Randomized and Deterministic Attention Sparsification Algorithms for
Over-parameterized Feature Dimension [18.57735939471469]
我々は注意問題のスパシフィケーションを考慮する。
超大規模特徴量の場合、文の長さをほぼ線形に縮めることができる。
論文 参考訳(メタデータ) (2023-04-10T05:52:38Z) - A Nearly-Optimal Bound for Fast Regression with $\ell_\infty$ Guarantee [16.409210914237086]
行列 $Ain mathbbRntimes d$ とテンソル $bin mathbbRn$ が与えられたとき、 $ell_infty$ の回帰問題を考える。
このような$ell_infty$レグレッションの保証を得るためには、濃密なスケッチ行列を使わなければならない。
我々はまた、OCE(Oblivious Coordinate-wise Embedding)特性を利用した $ell_infty$ guarantee regression のための新しい分析フレームワークを開発した。
論文 参考訳(メタデータ) (2023-02-01T05:22:40Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
我々は、任意のSchatten-$p$ノルムの下で、低ランク近似のためのクリロフ部分空間に基づく反復法について研究する。
我々の主な成果は、$tildeO(k/sqrtepsilon)$ matrix-vector productのみを使用するアルゴリズムである。
論文 参考訳(メタデータ) (2022-02-10T16:10:41Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
高速グラフサンプリングの最近の進歩を利用して,短い動画を複数の段落に効率よく要約する問題について検討する。
実験結果から,本アルゴリズムは最先端の手法と同等の映像要約を実現し,複雑さを大幅に低減した。
論文 参考訳(メタデータ) (2021-10-21T18:43:00Z) - The Average-Case Time Complexity of Certifying the Restricted Isometry
Property [66.65353643599899]
圧縮センシングにおいて、100万倍のN$センシング行列上の制限等尺性(RIP)はスパースベクトルの効率的な再構成を保証する。
Mtimes N$ matrices with i.d.$mathcalN(0,1/M)$ entry。
論文 参考訳(メタデータ) (2020-05-22T16:55:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。