論文の概要: Locret: Enhancing Eviction in Long-Context LLM Inference with Trained Retaining Heads
- arxiv url: http://arxiv.org/abs/2410.01805v1
- Date: Wed, 2 Oct 2024 17:59:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 15:04:32.151984
- Title: Locret: Enhancing Eviction in Long-Context LLM Inference with Trained Retaining Heads
- Title(参考訳): Locret: 訓練された保持頭部を用いた長期LLM推論におけるエミッション向上
- Authors: Yuxiang Huang, Binhang Yuan, Xu Han, Chaojun Xiao, Zhiyuan Liu,
- Abstract要約: Locretは、単一のNvidia 4090 GPU上でのLLM推論のためのフレームワークである。
推論中、チャンクされたプリフィルパターンとともに低重要キャッシュユニットを排除し、GPUのピークメモリ使用量を大幅に削減した。
我々の知る限り、Locretは単一のNvidia 4090 GPU上にLlama-3.1-8Bまたは同様のモデルをデプロイできる最初のフレームワークである。
- 参考スコア(独自算出の注目度): 30.690302709678758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown remarkable advances in supporting long-context comprehension and processing tasks. However, scaling the generation inference of LLMs to such long contexts incurs significant additional computation load, and demands a substantial GPU memory footprint to maintain the key-value (KV) cache of transformer-based LLMs. Existing KV cache compression methods, such as quantization, face memory bottlenecks as context length increases, while static-sized caches, such as eviction, suffer from inefficient policies. These limitations restrict deployment on consumer-grade devices like a single Nvidia 4090 GPU. To overcome this, we propose Locret, a framework for long-context LLM inference that introduces retaining heads to evaluate the causal importance of KV cache units, allowing for more accurate eviction within a fixed cache size. Locret is fine-tuned on top of the frozen backbone LLM using a minimal amount of data from standard long-context SFT datasets. During inference, we evict low-importance cache units along with a chunked prefill pattern, significantly reducing peak GPU memory usage. We conduct an extensive empirical study to evaluate Locret, where the experimental results show that Locret outperforms the recent competitive approaches, including InfLLM, Quantization, SirLLM, and MInference, in terms of memory efficiency and the quality of generated contents -- Locret achieves over a 20x and 8x KV cache compression ratio compared to the full KV cache for Phi-3-mini-128K and Llama-3.1-8B-instruct. Additionally, Locret can be combined with other methods, such as quantization and token merging. To our knowledge, Locret is the first framework capable of deploying Llama-3.1-8B or similar models on a single Nvidia 4090 GPU, enabling 128K long-context inference without compromising generation quality, and requiring little additional system optimizations.
- Abstract(参考訳): 大規模言語モデル(LLM)は、長文理解と処理タスクのサポートにおいて顕著な進歩を見せている。
しかし、LLMの生成をこのような長いコンテキストにスケールすると、計算負荷が大幅に増加し、トランスフォーマーベースのLLMのキー値(KV)キャッシュを維持するために相当量のGPUメモリフットプリントが要求される。
量子化のような既存のKVキャッシュ圧縮手法では、コンテキスト長が増加するにつれて顔メモリボトルネックが増加し、エビクションのような静的なサイズのキャッシュは非効率なポリシーに悩まされる。
これらの制限により、単一のNvidia 4090 GPUのようなコンシューマグレードデバイスへのデプロイメントが制限される。
そこで本稿では,KVキャッシュユニットの因果的重要性を評価するために,長期LLM推論のためのフレームワークであるLocretを提案する。
Locretは、標準のLong-context SFTデータセットから最小限のデータを使用して、冷凍バックボーンLLM上に微調整される。
推論中、チャンクされたプリフィルパターンとともに低重要キャッシュユニットを排除し、GPUのピークメモリ使用量を大幅に削減した。
LocretはPhi-3-mini-128KとLlama-3.1-8BのフルKVキャッシュと比較して,20倍,8倍のKVキャッシュ圧縮比を実現している。
さらに、Locretは量子化やトークンのマージといった他の方法と組み合わせることができる。
我々の知る限り、Locretは単一のNvidia 4090 GPUにLlama-3.1-8Bなどのモデルをデプロイできる最初のフレームワークである。
関連論文リスト
- Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs [74.74225314708225]
MLA(Multi-head Latent Attention)は、効率的かつ経済的推論を保証するために設計された革新的なアーキテクチャである。
本稿では,マルチヘッドアテンションからMLAへの移行のための,データ効率の良いファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2025-02-20T18:50:42Z) - ParallelComp: Parallel Long-Context Compressor for Length Extrapolation [51.68913021512016]
ParallelCompは、長文外挿のためのトレーニング不要のメソッドである。
コンテクスト長を4Kから128Kに拡張し、高いスループットを維持し、パープレキシティを保存する。
我々の分析は、並列注意機構における注意バイアスに関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2025-02-20T07:10:43Z) - MPCache: MPC-Friendly KV Cache Eviction for Efficient Private Large Language Model Inference [5.1206021159434805]
MPCacheは、長いシーケンスの履歴トークンが下流のデコードに異なる影響を与える可能性があるという観察に基づいて構築されている。
MPCacheは、異なるLLM生成タスク間で、先進的なKVキャッシュ消去ベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2025-01-12T13:18:04Z) - SCBench: A KV Cache-Centric Analysis of Long-Context Methods [61.025422435235456]
KVキャッシュ中心の視点から長文の手法を評価するベンチマークであるSCBenchを紹介する。
我々は、Gated Linear RNNsやMamba-Attention Hybridsを含む8つのカテゴリの長期コンテキストソリューションについて、広範なKVキャッシュ中心の分析を行う。
本研究は,O(n)メモリとサブO(n2)プリフィルによるスパース符号化が堅牢に動作する一方で,サブO(n)メモリ手法がマルチターンシナリオに悩まされていることを示す。
論文 参考訳(メタデータ) (2024-12-13T17:59:52Z) - MiniKV: Pushing the Limits of LLM Inference via 2-Bit Layer-Discriminative KV Cache [17.58398289266989]
Mini KVは、KVキャッシュサイズを大幅に削減しつつ、長時間のコンテキストタスクの精度を同時に保持するKVキャッシュ最適化手法である。
我々は,Mini KVが86%のKVキャッシュ圧縮比を実現し,98.5%以上の精度を回復し,最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-11-27T06:10:49Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - InstInfer: In-Storage Attention Offloading for Cost-Effective Long-Context LLM Inference [10.115950753431528]
大規模言語モデル(LLM)は、生成AIにおいて重要なマイルストーンである。
オフラインLLM推論におけるコンテキスト長とバッチサイズの増加は、キー値(KV)キャッシュのメモリ要求をエスカレートする。
いくつかのコスト効率の良いソリューションは、ホストメモリを利用するか、オフラインの推論シナリオのストレージコストを削減するよう最適化されている。
InstInferは、最も性能クリティカルな計算(つまり、復号フェーズにおける注意)とデータ(すなわちKVキャッシュ)を計算ストレージドライブ(CSD)にオフロードする。
InstInferがロングシーケンス推論のためのスループットを改善
論文 参考訳(メタデータ) (2024-09-08T06:06:44Z) - NACL: A General and Effective KV Cache Eviction Framework for LLMs at Inference Time [44.89402186438295]
大規模言語モデル(LLM)は、AIアプリケーションの革新的な急増に火をつけ、拡張されたコンテキストウィンドウを備えたエキサイティングな可能性の新たな時代を告げた。
しかし、これらのモデルのホスティングは、主に長期のコンテキストモデリングを含むKVキャッシュの広範なメモリ消費のため、コストを抑えることができる。
我々は,符号化フェーズにおける単一操作において,より最適かつ効率的な消去を実現する,長文KVキャッシュ消去のための一般的なフレームワークであるNACLを提案する。
論文 参考訳(メタデータ) (2024-08-07T10:31:07Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [53.08975547824068]
本研究では,大規模言語モデル(LLM)内の注意に基づく情報フローが,長期的文脈処理のための顕著なパターンによって集約されるかどうかを検討する。
観測の結果,LLMは下層に広く注意が散らばっているピラミッド情報ファンリングを通じて情報を集約することがわかった。
これらの知見に触発され、我々は新しい効率的なKVキャッシュ圧縮法であるPraamid KVを開発した。
論文 参考訳(メタデータ) (2024-06-04T07:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。