論文の概要: ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference
- arxiv url: http://arxiv.org/abs/2410.21465v1
- Date: Mon, 28 Oct 2024 19:08:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:42:22.610426
- Title: ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference
- Title(参考訳): シャドウKV: シャドウのKVキャッシュによる長期LLM推論
- Authors: Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie Chi, Beidi Chen,
- Abstract要約: ShadowKVは、LLM(Long-Context Large Language Model)推論システムである。
低ランクのキーキャッシュを格納し、バリューキャッシュをオフロードすることで、より大きなバッチサイズと長いシーケンスのためにメモリフットプリントを削減する。
最大6$times$大きなバッチサイズをサポートし、A100 GPUで最大3.04$times$までスループットを向上できる。
- 参考スコア(独自算出の注目度): 25.638980944695728
- License:
- Abstract: With the widespread deployment of long-context large language models (LLMs), there has been a growing demand for efficient support of high-throughput inference. However, as the key-value (KV) cache expands with the sequence length, the increasing memory footprint and the need to access it for each token generation both result in low throughput when serving long-context LLMs. While various dynamic sparse attention methods have been proposed to speed up inference while maintaining generation quality, they either fail to sufficiently reduce GPU memory consumption or introduce significant decoding latency by offloading the KV cache to the CPU. We present ShadowKV, a high-throughput long-context LLM inference system that stores the low-rank key cache and offloads the value cache to reduce the memory footprint for larger batch sizes and longer sequences. To minimize decoding latency, ShadowKV employs an accurate KV selection strategy that reconstructs minimal sparse KV pairs on-the-fly. By evaluating ShadowKV on a broad range of benchmarks, including RULER, LongBench, and Needle In A Haystack, and models like Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, we demonstrate that it can support up to 6$\times$ larger batch sizes and boost throughput by up to 3.04$\times$ on an A100 GPU without sacrificing accuracy, even surpassing the performance achievable with infinite batch size under the assumption of infinite GPU memory. The code is available at https://github.com/bytedance/ShadowKV.
- Abstract(参考訳): LLM(Long-context Large Language Model)の広範な展開により、高スループット推論の効率的なサポートに対する需要が高まっている。
しかし、キー値(KV)キャッシュはシーケンス長とともに拡大し、メモリフットプリントが増加し、トークン生成毎にアクセスする必要がなくなると、長文LLMを提供する際のスループットが低下する。
生成品質を維持しながら推論を高速化するために、様々なダイナミックスパースアテンション手法が提案されているが、GPUメモリの消費を十分に削減できないか、KVキャッシュをCPUにオフロードすることでデコードレイテンシーを著しく低下させるかのいずれかである。
低ランク鍵キャッシュを格納し、メモリフットプリントを減らし、バッチサイズを大きくし、シーケンスを長くする高スループット長文LLM推論システムであるShadowKVを提案する。
復号レイテンシを最小限にするため、ShadowKVでは、最小のスパースKVペアをオンザフライで再構築する、正確なKV選択戦略を採用している。
RULER、LongBench、Needle In A Haystackなどのベンチマークや、Llama-3.1-8B、Llama-3-8B-1M、GLM-4-9B-1M、Yi-9B-200K、Phi-3-Mini-128K、Qwen2-7B-128KといったモデルでShadowKVを評価することで、最大6$\times$より大きなバッチサイズをサポートし、スループットを3.04$\times$を犠牲にすることなくA100 GPU上で最大3.04$\times$、無限のGPUメモリの仮定で無限のバッチサイズで達成可能なパフォーマンスを超えることを示した。
コードはhttps://github.com/bytedance/ShadowKVで入手できる。
関連論文リスト
- VL-Cache: Sparsity and Modality-Aware KV Cache Compression for Vision-Language Model Inference Acceleration [7.463830743649754]
VLM(Vision-Language Models)は、多目的なタスクセットにまたがる印象的なパフォーマンスを実証している。
キーバリュー(KV)キャッシュは、画像やビデオなどの長い視覚的コンテキストをエンコードする。
既存のKVキャッシュ圧縮手法は大規模言語モデル(LLM)に有効である
VLM推論の高速化に適した新しいKVキャッシュ圧縮レシピを提案する。
論文 参考訳(メタデータ) (2024-10-29T20:04:34Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - Locret: Enhancing Eviction in Long-Context LLM Inference with Trained Retaining Heads [30.690302709678758]
Locretは、単一のNvidia 4090 GPU上でのLLM推論のためのフレームワークである。
推論中、チャンクされたプリフィルパターンとともに低重要キャッシュユニットを排除し、GPUのピークメモリ使用量を大幅に削減した。
我々の知る限り、Locretは単一のNvidia 4090 GPU上にLlama-3.1-8Bまたは同様のモデルをデプロイできる最初のフレームワークである。
論文 参考訳(メタデータ) (2024-10-02T17:59:52Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks [21.815661269986425]
KVMergerと呼ばれる新しいKVキャッシュマージ手法を提案し、長文タスクに対して適応的なKVキャッシュ圧縮を実現する。
我々のアプローチは、キー状態が1つのシーケンス内のトークンレベルで高い類似性を示すという興味深い観察にインスパイアされている。
我々は,制約メモリ予算下での長時間コンテキストタスクに対するKVMergerの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-07-11T12:50:42Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [53.08975547824068]
本研究では,大規模言語モデル(LLM)内の注意に基づく情報フローが,長期的文脈処理のための顕著なパターンによって集約されるかどうかを検討する。
観測の結果,LLMは下層に広く注意が散らばっているピラミッド情報ファンリングを通じて情報を集約することがわかった。
これらの知見に触発され、我々は新しい効率的なKVキャッシュ圧縮法であるPraamid KVを開発した。
論文 参考訳(メタデータ) (2024-06-04T07:51:30Z) - MiniCache: KV Cache Compression in Depth Dimension for Large Language Models [48.03117580340151]
キーバリュー(KV)キャッシュは、以前に生成されたトークンのキー値状態を格納する。
KVキャッシュのサイズはシーケンス長とともに線形に増加し、長いコンテキスト入力と広範囲なシーケンス生成を必要とするアプリケーションの課題を提起する。
レイヤ間のKVキャッシュを,新しい奥行きの観点から圧縮する,MiniCacheという,シンプルで効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T09:43:52Z) - Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference [78.65321721142624]
我々はキー値(KV)キャッシュによって課されるメモリボトルネックに焦点を当てる。
既存のKVキャッシュ手法は、比較的重要でないKVペアの大きなスワストを刈り取ったり、取り除いたりすることでこの問題に対処する。
本稿では,固定サイズキャッシュと退避型キャッシュを簡易に統合したLESSを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:54:56Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
我々はKIVIというチューニング不要な2ビットKVキャッシュ量子化アルゴリズムを開発した。
KIVI は Llama, Falcon, Mistral のモデルを $mathbf2.6times$ less peak memory を使用しながらほぼ同じ品質を維持することができる。
論文 参考訳(メタデータ) (2024-02-05T06:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。