論文の概要: LLM+KG@VLDB'24 Workshop Summary
- arxiv url: http://arxiv.org/abs/2410.01978v1
- Date: Wed, 2 Oct 2024 19:35:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 09:44:41.937894
- Title: LLM+KG@VLDB'24 Workshop Summary
- Title(参考訳): LLM+KG@VLDB'24ワークショップ概要報告
- Authors: Arijit Khan, Tianxing Wu, Xi Chen,
- Abstract要約: 大規模言語モデル(LLM)と知識グラフ(KG)がホットトピックとして浮上している。
LLM+KG'24ワークショップは、中国広州で行われたVLDB 2024と共同で開催され、重要なデータ管理の課題と機会について検討した。
本報告では,ワークショップでさまざまな講演者が提示した主な方向性とアプローチについて概説する。
- 参考スコア(独自算出の注目度): 9.347889830892182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The unification of large language models (LLMs) and knowledge graphs (KGs) has emerged as a hot topic. At the LLM+KG'24 workshop, held in conjunction with VLDB 2024 in Guangzhou, China, one of the key themes explored was important data management challenges and opportunities due to the effective interaction between LLMs and KGs. This report outlines the major directions and approaches presented by various speakers during the LLM+KG'24 workshop.
- Abstract(参考訳): 大規模言語モデル (LLM) と知識グラフ (KG) の統合がホットトピックとして浮上している。
LLM+KG'24ワークショップは、中国広州でVLDB 2024と共同で開催され、LLMとKGの効果的な相互作用による重要なデータ管理の課題と機会について検討した。
本報告では,LLM+KG'24ワークショップにおいて,様々な話者が提示した主な方向性とアプローチについて概説する。
関連論文リスト
- Practitioners' Discussions on Building LLM-based Applications for Production [6.544757635738911]
大規模言語モデル(LLM)を積極的に開発する実践者から,2022年から2024年までの189本のビデオを収集した。
BERTopicを用いてテキストの解析を行い, 生成したトピックをテーマに手作業でソート, マージし, 8つのテーマで合計20のトピックを抽出した。
最も一般的なトピックは、検索強化世代(RAG)システムに重点を置いて、デザイン・アンド・アーキテクチャ(英語版)というテーマに含まれる。
論文 参考訳(メタデータ) (2024-11-13T12:44:41Z) - Report on the 1st Workshop on Large Language Model for Evaluation in Information Retrieval (LLM4Eval 2024) at SIGIR 2024 [37.103230004631996]
本研究の目的は,情報検索における評価のためのLLMの話題を中心に,情報検索研究者を集結させることである。
このトピックの新規性を考えると、ワークショップは多面的な議論に焦点を当てていた。
論文 参考訳(メタデータ) (2024-08-09T23:55:58Z) - Research Trends for the Interplay between Large Language Models and Knowledge Graphs [5.364370360239422]
本稿では,大規模言語モデル(LLM)と知識グラフ(KG)の相乗関係について検討する。
本研究の目的は、KG質問回答、オントロジー生成、KG検証、およびLCMによるKG精度と一貫性の向上など、現在の研究におけるギャップに対処することである。
論文 参考訳(メタデータ) (2024-06-12T13:52:38Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - Integration of Large Language Models and Federated Learning [58.9876604258949]
本稿では,LLMとFLの融合を3つの部分に分割する研究フレームワークを提案する。
まず,LLMの領域とFLを組み合わせた研究の現状について概説する。
次に、医療、金融、教育などの重要なシナリオにおけるLLMとFLの組み合わせの実践的応用について論じる。
論文 参考訳(メタデータ) (2023-07-18T02:09:14Z) - CMMLU: Measuring massive multitask language understanding in Chinese [133.70911295934746]
本稿では, 自然科学, 社会科学, 工学, 人文科学など, さまざまな分野をカバーする総合的な中国のベンチマークを紹介する。
CMMLUは、中国語の文脈における大きな言語モデルの知識と推論能力の評価におけるギャップを埋める。
論文 参考訳(メタデータ) (2023-06-15T15:49:51Z) - Unifying Large Language Models and Knowledge Graphs: A Roadmap [61.824618473293725]
大規模言語モデル(LLM)は、自然言語処理と人工知能の分野で新たな波を発生させている。
知識グラフ(KG)、ウィキペディア、フアプ(英語版)は、豊富な事実知識を明示的に記憶する構造化された知識モデルである。
論文 参考訳(メタデータ) (2023-06-14T07:15:26Z) - Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond [48.70557995528463]
このガイドは、研究者や実践者が大規模言語モデルを扱うための貴重な洞察とベストプラクティスを提供することを目的としている。
実世界のシナリオにおける LLM の実用的応用と限界を説明するために, 様々なユースケースと非利用事例を提示する。
論文 参考訳(メタデータ) (2023-04-26T17:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。