論文の概要: Semi-Supervised Contrastive VAE for Disentanglement of Digital Pathology Images
- arxiv url: http://arxiv.org/abs/2410.02012v1
- Date: Wed, 2 Oct 2024 20:25:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 09:34:57.623944
- Title: Semi-Supervised Contrastive VAE for Disentanglement of Digital Pathology Images
- Title(参考訳): デジタル画像の切り離しのための半監督コントラストVAE
- Authors: Mahmudul Hasan, Xiaoling Hu, Shahira Abousamra, Prateek Prasanna, Joel Saltz, Chao Chen,
- Abstract要約: 解離モデルは、潜在空間を解釈可能な部分空間に分解することで解釈可能性を高める。
そこで本研究では,病理画像の最初のアンタングル化法を提案する。
これにより,TIL検出深層学習モデルの解釈性や一般化能力も向上する。
- 参考スコア(独自算出の注目度): 13.892052633393872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the strong prediction power of deep learning models, their interpretability remains an important concern. Disentanglement models increase interpretability by decomposing the latent space into interpretable subspaces. In this paper, we propose the first disentanglement method for pathology images. We focus on the task of detecting tumor-infiltrating lymphocytes (TIL). We propose different ideas including cascading disentanglement, novel architecture, and reconstruction branches. We achieve superior performance on complex pathology images, thus improving the interpretability and even generalization power of TIL detection deep learning models. Our codes are available at https://github.com/Shauqi/SS-cVAE.
- Abstract(参考訳): ディープラーニングモデルの強い予測力にもかかわらず、その解釈可能性は依然として重要な関心事である。
解離モデルは、潜在空間を解釈可能な部分空間に分解することで解釈可能性を高める。
本稿では,病理画像に対する第1次解離法を提案する。
腫瘍浸潤性リンパ球(TIL)の検出に焦点をあてる。
本稿では, カスケード・アンタングルメント, 新規アーキテクチャ, 再構築ブランチなど, さまざまなアイデアを提案する。
これにより,TIL検出深層学習モデルの解釈性や一般化能力も向上する。
私たちのコードはhttps://github.com/Shauqi/SS-cVAE.comで公開されています。
関連論文リスト
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
既存のAI生成画像(AIGI)検出手法は、しばしば限定的な一般化性能に悩まされる。
本稿では、AIGI検出において、これまで見過ごされてきた重要な非対称性現象を同定する。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - Decoding Diffusion: A Scalable Framework for Unsupervised Analysis of Latent Space Biases and Representations Using Natural Language Prompts [68.48103545146127]
本稿では拡散潜在空間の教師なし探索のための新しい枠組みを提案する。
我々は、自然言語のプロンプトと画像キャプションを直接利用して、遅延方向をマップする。
本手法は,拡散モデルに符号化された意味的知識をよりスケーラブルで解釈可能な理解を提供する。
論文 参考訳(メタデータ) (2024-10-25T21:44:51Z) - HistoSPACE: Histology-Inspired Spatial Transcriptome Prediction And Characterization Engine [0.0]
HistoSPACEモデルは、STデータで利用可能な組織像の多様性を調べ、組織像から分子的洞察を抽出する。
モデルは、現代のアルゴリズムと比較して大きな効率性を示し、残余のクロスバリデーションにおいて0.56の相関関係を示す。
論文 参考訳(メタデータ) (2024-08-07T07:12:52Z) - Unveiling the Unseen: Identifiable Clusters in Trained Depthwise
Convolutional Kernels [56.69755544814834]
深部分離型畳み込みニューラルネットワーク(DS-CNN)の最近の進歩は、新しいアーキテクチャをもたらす。
本稿では,DS-CNNアーキテクチャのもう一つの顕著な特性を明らかにする。
論文 参考訳(メタデータ) (2024-01-25T19:05:53Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Trade-offs in Fine-tuned Diffusion Models Between Accuracy and
Interpretability [5.865936619867771]
生成拡散モデルにおける従来の計測値とモデル解釈可能性による画像の忠実度との間に連続的なトレードオフが生じる。
我々は、真に解釈可能な生成モデルを開発するための設計原則のセットを提示する。
論文 参考訳(メタデータ) (2023-03-31T09:11:26Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Deep Learning Generates Synthetic Cancer Histology for Explainability
and Education [37.13457398561086]
条件付き生成逆数ネットワーク(英: Conditional Generative Adversarial Network、cGAN)は、合成画像を生成するAIモデルである。
本稿では,cGANを用いた分子サブタイプ腫瘍の分類訓練モデルについて述べる。
腫瘍の病理組織学的所見に対するヒトの理解を増強し, 向上させることが, 明確で直感的なcGANの可視化に有効であることを示す。
論文 参考訳(メタデータ) (2022-11-12T00:14:57Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Going Beyond Saliency Maps: Training Deep Models to Interpret Deep
Models [16.218680291606628]
解釈性は、複雑な深層学習モデルを用いて脳障害の理解を進める上で重要な要素である。
疾患のパターンを注入または除去するために、与えられたイメージを歪めることができるシミュレーターネットワークを訓練することを提案する。
本研究は,アルツハイマー病とアルコール使用障害の影響を可視化するために,合成データセットと2つのニューロイメージングデータセットで訓練された分類器の解釈に応用する。
論文 参考訳(メタデータ) (2021-02-16T15:57:37Z) - Learning a low dimensional manifold of real cancer tissue with
PathologyGAN [6.147958017186105]
高忠実度癌組織像をシミュレートする深層生成モデルを提案する。
このモデルは、以前に開発されたジェネレーティブ・敵ネットワークであるPathologyGANによって訓練されている。
乳がんコホート249K画像を用いて潜伏空間について検討した。
論文 参考訳(メタデータ) (2020-04-13T16:18:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。