論文の概要: Price-guided user attention in large-scale E-commerce group recommendation
- arxiv url: http://arxiv.org/abs/2410.02074v1
- Date: Wed, 2 Oct 2024 22:46:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 09:05:40.827789
- Title: Price-guided user attention in large-scale E-commerce group recommendation
- Title(参考訳): 大規模Eコマースグループ推薦における価格誘導型ユーザアテンション
- Authors: Yang Shi, Young-joo Chung,
- Abstract要約: 実世界のEコマースデータセット上で広く利用されているグループ推薦モデルから,ユーザの注意点を分析した。
本稿では,ユーザアグリゲーションの指針として,アイテム価格を取り入れたグループ推薦手法を提案する。
以上の結果から,我々の価格誘導型ユーザアテンションアプローチは,ヒット率と平均二乗誤差で最先端の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 4.899646467568438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing group recommender systems utilize attention mechanisms to identify critical users who influence group decisions the most. We analyzed user attention scores from a widely-used group recommendation model on a real-world E-commerce dataset and found that item price and user interaction history significantly influence the selection of critical users. When item prices are low, users with extensive interaction histories are more influential in group decision-making. Conversely, their influence diminishes with higher item prices. Based on these observations, we propose a novel group recommendation approach that incorporates item price as a guiding factor for user aggregation. Our model employs an adaptive sigmoid function to adjust output logits based on item prices, enhancing the accuracy of user aggregation. Our model can be plugged into any attention-based group recommender system if the price information is available. We evaluate our model's performance on a public benchmark and a real-world dataset. We compare it with other state-of-the-art group recommendation methods. Our results demonstrate that our price-guided user attention approach outperforms the state-of-the-art methods in terms of hit ratio and mean square error.
- Abstract(参考訳): 既存のグループレコメンデータシステムは、グループ決定に最も影響を及ぼす重要なユーザを特定するために、アテンションメカニズムを利用する。
実世界のEコマースデータセット上で広く利用されているグループ推薦モデルからユーザ注意スコアを分析し,アイテム価格とユーザインタラクション履歴が重要なユーザの選択に大きく影響することを発見した。
アイテム価格が低い場合、広範囲にわたるインタラクション履歴を持つユーザは、グループ意思決定に影響を及ぼす。
逆に、その影響はアイテム価格の上昇とともに減少する。
そこで本研究では,ユーザアグリゲーションの指針としてアイテム価格を組み込んだグループレコメンデーション手法を提案する。
本モデルでは,商品価格に基づいて出力ロジットを調整し,ユーザアグリゲーションの精度を高めるために,適応型シグモイド関数を用いる。
価格情報が得られれば、アテンションベースのグループレコメンデータシステムに差し込むことができる。
我々は、公開ベンチマークと実世界のデータセットでモデルの性能を評価する。
我々は、他の最先端グループレコメンデーション手法と比較する。
以上の結果から,我々の価格誘導型ユーザアテンションアプローチは,ヒット率と平均二乗誤差で最先端の手法よりも優れていることが示された。
関連論文リスト
- ComPO: Community Preferences for Language Model Personalization [122.54846260663922]
ComPOは、言語モデルにおける好みの最適化をパーソナライズする手法である。
ComPRedはRedditからコミュニティレベルの好みを持った質問応答データセットです。
論文 参考訳(メタデータ) (2024-10-21T14:02:40Z) - Proactive Recommendation in Social Networks: Steering User Interest via Neighbor Influence [54.13541697801396]
我々は,PRSN(Proactive Recommendation in Social Networks)という新しいタスクを提案する。
PRSNは、社会的隣人の影響力を生かして、間接的に利用者の関心を喚起する。
本稿では,2つの主要なモジュールを持つNighbor Interference Recommendation (NIRec) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-13T15:53:40Z) - Experiments on Generalizability of User-Oriented Fairness in Recommender
Systems [2.0932879442844476]
公正を意識した推薦システムは、異なるユーザーグループを同様に扱うことを目的としている。
本稿では,ユーザ中心の公平度を再評価するフレームワークを提案する。
我々は、ユーザ(NDCGなど)とアイテム(新規性、アイテムフェアネスなど)の両方から、フレームワークの再ランク付けによる最終的なレコメンデーションを評価する。
論文 参考訳(メタデータ) (2022-05-17T12:36:30Z) - Price DOES Matter! Modeling Price and Interest Preferences in
Session-based Recommendation [55.0391061198924]
セッションベースのレコメンデーションは、匿名ユーザが自分の短い行動シーケンスに基づいて購入したいアイテムを予測することを目的としている。
セッションベースのレコメンデーションの価格設定を組み込むのは簡単ではない。
セッションベースレコメンデーションのためのCoHHN(Co-guided Heterogeneous Hypergraph Network)を提案する。
論文 参考訳(メタデータ) (2022-05-09T10:47:15Z) - Causal Disentanglement with Network Information for Debiased
Recommendations [34.698181166037564]
近年の研究では、因果的観点からレコメンデーターシステムをモデル化することで、デビアスを提案する。
この設定における重要な課題は、隠れた共同設立者を説明することだ。
我々は,ネットワーク情報(すなわち,ユーザ・ソーシャルおよびユーザ・イテムネットワーク)を活用して,隠れた共同創設者をよりよく近似することを提案する。
論文 参考訳(メタデータ) (2022-04-14T20:55:11Z) - The Unfairness of Active Users and Popularity Bias in Point-of-Interest
Recommendation [4.578469978594752]
本稿では, (i) アクティブユーザの不公平さ, (ii) 人気項目の不公平さ, (iii) 調査三角形の3つの角度として推薦の精度について検討する。
アイテムフェアネスでは、アイテムをショートヘッド、ミッドテール、ロングテールグループに分割し、これらのアイテムグループの露出をユーザのトップkレコメンデーションリストにまとめる。
本研究は, 消費者と生産者の公正性を両立させることができず, 自然バイアスが原因と考えられる変数間のトレードオフが示唆されている。
論文 参考訳(メタデータ) (2022-02-27T08:02:19Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - Set2setRank: Collaborative Set to Set Ranking for Implicit Feedback
based Recommendation [59.183016033308014]
本稿では,暗黙的フィードバックの特徴を探究し,推奨するSet2setRankフレームワークを提案する。
提案するフレームワークはモデルに依存しず,ほとんどの推奨手法に容易に適用できる。
論文 参考訳(メタデータ) (2021-05-16T08:06:22Z) - User-oriented Fairness in Recommendation [21.651482297198687]
我々は,レコメンダシステムにおける不公平性問題に対して,ユーザの視点から対処する。
ユーザの行動レベルに応じて、有利で不利なグループにグループ化します。
提案手法は,レコメンデーションシステムにおけるユーザのグループ公平性を向上するだけでなく,全体的なレコメンデーション性能も向上する。
論文 参考訳(メタデータ) (2021-04-21T17:50:31Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
グループレコメンデータシステムは、ユーザの個人的な好みだけでなく、嗜好集約戦略も正確に学習できなければならない。
本稿では,BGEM(Bipartite Graphding Model)とGCN(Graph Convolutional Networks)を基本構造として,グループとユーザ表現を統一的に学習する。
論文 参考訳(メタデータ) (2020-10-02T07:11:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。