RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning
- URL: http://arxiv.org/abs/2410.02089v2
- Date: Tue, 18 Feb 2025 11:39:46 GMT
- Title: RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning
- Authors: Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, Gabriel Synnaeve,
- Abstract summary: Large language models (LLMs) deployed as agents solve user-specified tasks over multiple steps while keeping the required manual engagement to a minimum.
We propose an end-to-end reinforcement learning method for teaching models to leverage execution feedback in the realm of code synthesis.
- Score: 33.754240030720425
- License:
- Abstract: Large language models (LLMs) deployed as agents solve user-specified tasks over multiple steps while keeping the required manual engagement to a minimum. Crucially, such LLMs need to ground their generations in any feedback obtained to reliably achieve the desired outcomes. We propose an end-to-end reinforcement learning method for teaching models to leverage execution feedback in the realm of code synthesis, where state-of-the-art LLMs struggle to improve code iteratively compared to independent sampling. We benchmark on competitive programming tasks, where we achieve new state-of-the art results with both small (8B parameters) and large (70B) models while reducing the amount of samples required by an order of magnitude. Our analysis of inference-time behavior demonstrates that our method produces LLMs that effectively leverage automatic feedback over multiple steps.
Related papers
- LLM-Powered Preference Elicitation in Combinatorial Assignment [17.367432304040662]
We study the potential of large language models (LLMs) as proxies for humans to simplify preference elicitation (PE) in assignment.
We propose a framework for LLM proxies that can work in tandem with SOTA ML-powered preference elicitation schemes.
We experimentally evaluate the efficiency of LLM proxies against human queries in the well-studied course allocation domain.
arXiv Detail & Related papers (2025-02-14T17:12:20Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.
Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.
We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - MIA-Bench: Towards Better Instruction Following Evaluation of Multimodal LLMs [47.94710556156627]
MIA-Bench is a benchmark designed to evaluate multimodal large language models (MLLMs) on their ability to strictly adhere to complex instructions.
Our benchmark comprises a diverse set of 400 image-prompt pairs, each crafted to challenge the models' compliance with layered instructions.
arXiv Detail & Related papers (2024-07-01T17:53:35Z) - ITERTL: An Iterative Framework for Fine-tuning LLMs for RTL Code Generation [9.409062607311528]
Large language models (LLMs) have demonstrated excellent performance in understanding human instructions and generating code.
We introduce a simple yet effective iterative training paradigm named ITERTL.
We show the model trained through our proposed approach can compete with and even outperform the state-of-the-art (SOTA) open-source model.
arXiv Detail & Related papers (2024-06-28T01:44:57Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
Large language models (LLMs) have revolutionized the field of AI, demonstrating unprecedented capacity across various tasks.
In this paper, we propose an efficient LLM inference pipeline that harnesses the power of LLMs.
arXiv Detail & Related papers (2023-05-22T15:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.