論文の概要: Probabilistic road classification in historical maps using synthetic data and deep learning
- arxiv url: http://arxiv.org/abs/2410.02250v1
- Date: Thu, 3 Oct 2024 06:43:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 07:36:05.223790
- Title: Probabilistic road classification in historical maps using synthetic data and deep learning
- Title(参考訳): 合成データとディープラーニングを用いた歴史地図の確率論的道路分類
- Authors: Dominik J. Mühlematter, Sebastian Schweizer, Chenjing Jiao, Xue Xia, Magnus Heitzler, Lorenz Hurni,
- Abstract要約: 深層学習と地理情報,コンピュータによる絵画,画像処理手法を融合した新しいフレームワークを提案する。
この枠組みは,道路地形のみを用いた歴史地図からの道路の抽出と分類を可能にする。
道路クラス2では, それぞれ94%以上, 92%以上であった。
- 参考スコア(独自算出の注目度): 3.3755652248305004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Historical maps are invaluable for analyzing long-term changes in transportation and spatial development, offering a rich source of data for evolutionary studies. However, digitizing and classifying road networks from these maps is often expensive and time-consuming, limiting their widespread use. Recent advancements in deep learning have made automatic road extraction from historical maps feasible, yet these methods typically require large amounts of labeled training data. To address this challenge, we introduce a novel framework that integrates deep learning with geoinformation, computer-based painting, and image processing methodologies. This framework enables the extraction and classification of roads from historical maps using only road geometries without needing road class labels for training. The process begins with training of a binary segmentation model to extract road geometries, followed by morphological operations, skeletonization, vectorization, and filtering algorithms. Synthetic training data is then generated by a painting function that artificially re-paints road segments using predefined symbology for road classes. Using this synthetic data, a deep ensemble is trained to generate pixel-wise probabilities for road classes to mitigate distribution shift. These predictions are then discretized along the extracted road geometries. Subsequently, further processing is employed to classify entire roads, enabling the identification of potential changes in road classes and resulting in a labeled road class dataset. Our method achieved completeness and correctness scores of over 94% and 92%, respectively, for road class 2, the most prevalent class in the two Siegfried Map sheets from Switzerland used for testing. This research offers a powerful tool for urban planning and transportation decision-making by efficiently extracting and classifying roads from historical maps.
- Abstract(参考訳): 歴史地図は、輸送と空間開発における長期的変化を分析するのに有用であり、進化研究のための豊富なデータソースを提供する。
しかし、これらの地図からの道路網のデジタル化と分類は、しばしば高価で時間を要するため、広く使われることは限られている。
近年の深層学習の進歩により、歴史地図からの道路の自動抽出が可能になったが、これらの手法は典型的には大量のラベル付きトレーニングデータを必要とする。
この課題に対処するために、ディープラーニングと地理情報、コンピュータベースの絵画、画像処理手法を統合する新しいフレームワークを導入する。
この枠組みは,道路分類ラベルを必要とせず,道路地形のみを用いた歴史地図からの道路の抽出と分類を可能にする。
このプロセスは、道路ジオメトリを抽出するためのバイナリセグメンテーションモデルのトレーニングから始まり、その後に形態的操作、骨格化、ベクトル化、フィルタリングアルゴリズムが続く。
合成学習データは,事前に定義された道路クラス記号を用いて,道路セグメントを人工的に塗り替える絵画機能によって生成される。
この合成データを用いて、深いアンサンブルを訓練し、道路クラスにおける分布シフトを緩和する画素ワイズ確率を生成する。
これらの予測は、抽出された道路地形に沿って離散化される。
その後、道路全体の分類にさらなる処理が使用され、道路クラスにおける潜在的な変化を識別し、ラベル付き道路クラスデータセットが作成される。
本手法は,スイスのジークフリート・マップシート2枚のうち,ロードクラス2において,それぞれ94%以上,92%以上,完全度92%以上,完全度94%以上,完全度92%以上を達成した。
本研究は, 歴史的地図から道路を効率的に抽出・分類することで, 都市計画・交通決定のための強力なツールを提供する。
関連論文リスト
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - Road Graph Generator: Mapping roads at construction sites from GPS data [0.0]
本稿では,GPS軌道から地図構築地点への道路推定手法を提案する。
この課題は, 建設機械の非標準運動パターンが不安定であることから, 独特な課題である。
提案手法はまず,重要な決定点として機能する道路網の交差点を識別し,エッジと接続してグラフを生成する。
論文 参考訳(メタデータ) (2024-02-15T12:53:25Z) - Semi-supervised Road Updating Network (SRUNet): A Deep Learning Method
for Road Updating from Remote Sensing Imagery and Historical Vector Maps [3.350048575501172]
本研究では,道路更新のための半教師付き学習(SRUNet)に基づく道路検出手法を提案する。
提案したSRUNetは,幅広い道路更新作業に対して,安定かつ最新かつ信頼性の高い予測結果を提供する。
論文 参考訳(メタデータ) (2023-04-28T16:51:35Z) - Haul Road Mapping from GPS Traces [0.0]
本稿では,道路網の正確な表現を,現場で運用されているトラックから取得したGPSデータを用いて自動的に導き出す可能性について検討する。
全ての試験アルゴリズムで見られる欠点に基づいて, 地雷の現場に典型的な工芸品の道路地図を幾何学的に解析するポストプロセッシング・ステップが開発された。
論文 参考訳(メタデータ) (2022-06-27T04:35:06Z) - GraphWalks: Efficient Shape Agnostic Geodesic Shortest Path Estimation [93.60478281489243]
3次元曲面上の測地線経路を近似する学習可能なネットワークを提案する。
提案手法は,最短経路の効率的な近似と測地距離推定を提供する。
論文 参考訳(メタデータ) (2022-05-30T16:22:53Z) - SPIN Road Mapper: Extracting Roads from Aerial Images via Spatial and
Interaction Space Graph Reasoning for Autonomous Driving [64.10636296274168]
道路抽出は、自律航法システムを構築するための重要なステップである。
この問題に対して単に畳み込みニューラルネットワーク(ConvNets)を使用することは、画像内の道路セグメント間の遠い依存関係をキャプチャする非効率であるため、効果がない。
本研究では,ConvNetに接続した時,特徴写像から投影された空間空間および相互作用空間上に構築されたグラフの推論を行う空間空間グラフ推論(SPIN)モジュールを提案する。
論文 参考訳(メタデータ) (2021-09-16T03:52:17Z) - PathBench: A Benchmarking Platform for Classical and Learned Path
Planning Algorithms [59.3879573040863]
パスプランニングは、モバイルロボティクスの重要なコンポーネントです。
アルゴリズムを全体的あるいは統一的にベンチマークする試みはほとんど行われていない。
本稿では,パスプランニングアルゴリズムの開発,視覚化,トレーニング,テスト,ベンチマークを行うプラットフォームであるPathBenchについて述べる。
論文 参考訳(メタデータ) (2021-05-04T21:48:18Z) - Fusion of neural networks, for LIDAR-based evidential road mapping [3.065376455397363]
LIDARスキャンにおける道路検出に最適化された新しい畳み込みアーキテクチャであるRoadSegを紹介する。
RoadSegは、個々のLIDARポイントを道路に属するか、そうでないかを分類するために使用される。
そこで本研究では,連続した道路検出結果を融合する明らかな道路マッピングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-05T18:14:36Z) - BoMuDANet: Unsupervised Adaptation for Visual Scene Understanding in
Unstructured Driving Environments [54.22535063244038]
非構造交通環境における視覚的シーン理解のための教師なし適応手法を提案する。
本手法は,車,トラック,二輪車,三輪車,歩行者からなる密集・異種交通を伴う非構造現実シナリオを対象としたものである。
論文 参考訳(メタデータ) (2020-09-22T08:25:44Z) - Automatic extraction of road intersection points from USGS historical
map series using deep convolutional neural networks [0.0]
道路交差点のデータは、異なる地理空間的応用と分析に利用されてきた。
我々は、ディープ畳み込みニューラルネットワークを領域ベースCNNと呼ばれるオブジェクト検出タスクに使用する標準パラダイムを採用した。
また、従来のコンピュータビジョンアルゴリズムと比較して、RCNNはより正確な抽出を提供する。
論文 参考訳(メタデータ) (2020-07-14T23:51:15Z) - Road Network Metric Learning for Estimated Time of Arrival [93.0759529610483]
本稿では,ATA(Estimated Time of Arrival)のための道路ネットワークメトリックラーニングフレームワークを提案する。
本研究は,(1)走行時間を予測する主回帰タスク,(2)リンク埋め込みベクトルの品質向上のための補助的計量学習タスクの2つの構成要素から構成される。
提案手法は最先端モデルよりも優れており,その促進は少ないデータでコールドリンクに集中していることを示す。
論文 参考訳(メタデータ) (2020-06-24T04:45:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。