論文の概要: Can Capacitive Touch Images Enhance Mobile Keyboard Decoding?
- arxiv url: http://arxiv.org/abs/2410.02264v1
- Date: Thu, 3 Oct 2024 07:29:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 07:36:05.207625
- Title: Can Capacitive Touch Images Enhance Mobile Keyboard Decoding?
- Title(参考訳): 携帯のキーボードをデコードする「Capacitive Touch Images」
- Authors: Piyawat Lertvittayakumjorn, Shanqing Cai, Billy Dou, Cedric Ho, Shumin Zhai,
- Abstract要約: タッチスクリーンキーボードのタップデコーディング精度を向上させるために,タッチヒートマップを活用できるかどうかを検討する。
本研究では,ユーザタップをセンチロイドやヒートマップを入力として利用して解釈する機械学習モデルを開発し,評価した。
その結果、入力機能セットにヒートマップを追加すると、平均で21.4%の文字誤り率が相対的に減少することがわかった。
- 参考スコア(独自算出の注目度): 10.232750419662585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Capacitive touch sensors capture the two-dimensional spatial profile (referred to as a touch heatmap) of a finger's contact with a mobile touchscreen. However, the research and design of touchscreen mobile keyboards -- one of the most speed and accuracy demanding touch interfaces -- has focused on the location of the touch centroid derived from the touch image heatmap as the input, discarding the rest of the raw spatial signals. In this paper, we investigate whether touch heatmaps can be leveraged to further improve the tap decoding accuracy for mobile touchscreen keyboards. Specifically, we developed and evaluated machine-learning models that interpret user taps by using the centroids and/or the heatmaps as their input and studied the contribution of the heatmaps to model performance. The results show that adding the heatmap into the input feature set led to 21.4% relative reduction of character error rates on average, compared to using the centroid alone. Furthermore, we conducted a live user study with the centroid-based and heatmap-based decoders built into Pixel 6 Pro devices and observed lower error rate, faster typing speed, and higher self-reported satisfaction score based on the heatmap-based decoder than the centroid-based decoder. These findings underline the promise of utilizing touch heatmaps for improving typing experience in mobile keyboards.
- Abstract(参考訳): 静電容量タッチセンサーは、指とタッチスクリーンとの接触の2次元空間プロファイル(タッチヒートマップと呼ばれる)をキャプチャする。
しかし,タッチインターフェースを最も高速かつ高精度に要求するタッチスクリーン型モバイルキーボードの研究と設計は,タッチ画像の熱マップを入力とするタッチセンタロイドの位置に着目し,生の空間信号の残りの部分を捨てている。
本稿では,タッチスクリーンキーボードのタップデコード精度を向上させるために,タッチヒートマップを活用することができるかどうかを検討する。
具体的には,ユーザのタップを遠心点および/またはヒートマップを用いて解釈する機械学習モデルの開発と評価を行い,ヒートマップのモデル性能に対する寄与について検討した。
その結果、入力機能セットにヒートマップを追加することで、セントロイドのみを使用する場合と比較して、平均で21.4%の文字誤り率の相対的な減少が見られた。
さらに,Pixel 6 Proデバイスに組み込まれたCentroidベースのデコーダとHeatmapベースのデコーダを用いたライブユーザスタディを行い,Centroidベースのデコーダよりもエラー率,タイピング速度,自己申告による満足度スコアが高かった。
これらの知見は,モバイルキーボードのタイピング体験を改善するためにタッチヒートマップを活用するという約束を裏付けるものである。
関連論文リスト
- Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
本研究は,2次元局所特徴の検出におけるサブピクセル精度の課題に対処する。
本稿では,検出された特徴に対するオフセットベクトルを学習することにより,サブピクセル精度で検出器を拡張できる新しいネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T12:39:56Z) - Controllable Visual-Tactile Synthesis [28.03469909285511]
一つのスケッチから視覚と触覚の両方の出力を合成する条件生成モデルを開発した。
次に,電気接着型触覚デバイスに高品質な視覚・触覚出力を描画するパイプラインを導入する。
論文 参考訳(メタデータ) (2023-05-04T17:59:51Z) - Precise Facial Landmark Detection by Reference Heatmap Transformer [52.417964103227696]
より正確に顔のランドマークを検出するための参照ヒートマップ変換器(RHT)を提案する。
評価実験の結果,提案手法は文献における最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-03-14T12:26:48Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
人間は触覚と触覚に頼っている。
視覚ベースの触覚センサーは、様々なロボット認識や制御タスクに広く利用されている。
本稿では,視覚に基づく触覚センサを用いた対話的知覚手法を提案する。
論文 参考訳(メタデータ) (2023-03-10T16:27:37Z) - Real-Time Hand Gesture Identification in Thermal Images [0.0]
我々のシステムは、フレーム内の複数のハンド領域を処理し、リアルタイムアプリケーションで高速に処理することができる。
ジェスチャー10のサーマルイメージデータセットを新たに収集し,手動作認識精度97%を報告した。
論文 参考訳(メタデータ) (2023-03-04T05:02:35Z) - Simultaneous prediction of hand gestures, handedness, and hand keypoints
using thermal images [0.6087960723103347]
赤外線カメラで捉えたサーマルデータを用いて手指のジェスチャー分類,手指検出,手指キーポイントの局所化を同時に行う手法を提案する。
提案手法は,共有エンコーダデコーダ層を含む新しい深層マルチタスク学習アーキテクチャを用いて,各タスクに専用の3つのブランチを付加する。
論文 参考訳(メタデータ) (2023-03-02T19:25:40Z) - Mobile Behavioral Biometrics for Passive Authentication [65.94403066225384]
本研究は, 単モーダルおよび多モーダルな行動的生体特性の比較分析を行った。
HuMIdbは、最大かつ最も包括的なモバイルユーザインタラクションデータベースである。
我々の実験では、最も識別可能な背景センサーは磁力計であり、タッチタスクではキーストロークで最良の結果が得られる。
論文 参考訳(メタデータ) (2022-03-14T17:05:59Z) - PyTouch: A Machine Learning Library for Touch Processing [68.32055581488557]
我々は、タッチセンシング信号の処理に特化した、最初の機械学習ライブラリであるPyTouchを紹介する。
PyTouchはモジュール式で使いやすく、最先端のタッチ処理機能をサービスとして提供するように設計されている。
タッチ検出,スリップ,オブジェクトポーズ推定などのタッチ処理タスクにおいて,触覚センサの実際のデータからPyTouchを評価する。
論文 参考訳(メタデータ) (2021-05-26T18:55:18Z) - TapNet: The Design, Training, Implementation, and Applications of a
Multi-Task Learning CNN for Off-Screen Mobile Input [75.05709030478073]
本稿では,スマートフォンのタップを検出するマルチタスクネットワークであるTapNetの設計,トレーニング,実装,応用について述べる。
TapNetはデバイス間のデータから共同で学習し、タップ方向やタップ位置を含む複数のタップ特性を同時に認識することができる。
論文 参考訳(メタデータ) (2021-02-18T00:45:41Z) - FastHand: Fast Hand Pose Estimation From A Monocular Camera [12.790733588554588]
ハンドポーズ推定のための高速・高精度なフレームワーク「FastHand」を提案します。
FastHandは、NVIDIA Jetson TX2グラフィックス処理ユニットで毎秒25フレームの速度に達しながら、高い精度のスコアを提供する。
論文 参考訳(メタデータ) (2021-02-14T04:12:41Z) - Spatio-temporal Attention Model for Tactile Texture Recognition [25.06942319117782]
触覚テクスチャ認識のための新しい時空間注意モデル(STAM)を提案する。
提案したSTAMは,それぞれの触覚テクスチャの空間的焦点と触覚シーケンスの時間的相関の両方に注意を払っている。
100種類の異なる布のテクスチャを識別する実験では,空間的,時間的に選択的な注意が認識精度を大幅に向上させた。
論文 参考訳(メタデータ) (2020-08-10T22:32:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。