Optimised Hybrid Classical-Quantum Algorithm for Accelerated Solution of Sparse Linear Systems
- URL: http://arxiv.org/abs/2410.02408v1
- Date: Thu, 3 Oct 2024 11:36:14 GMT
- Title: Optimised Hybrid Classical-Quantum Algorithm for Accelerated Solution of Sparse Linear Systems
- Authors: Hakikat Singh,
- Abstract summary: This paper introduces a hybrid classical-quantum algorithm that combines preconditioning techniques with the HHL algorithm to solve sparse linear systems more efficiently.
We show that the proposed approach surpasses traditional methods in speed and scalability but also mitigates some of the inherent limitations of quantum algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficiently solving large-scale sparse linear systems poses a significant challenge in computational science, especially in fields such as physics, engineering, machine learning, and finance. Traditional classical algorithms face scalability issues as the size of these systems increases, leading to performance degradation. On the other hand, quantum algorithms, like the Harrow-Hassidim-Lloyd (HHL) algorithm, offer exponential speedups for solving linear systems, yet they are constrained by the current state of quantum hardware and sensitivity to matrix condition numbers. This paper introduces a hybrid classical-quantum algorithm that combines CUDA-accelerated preconditioning techniques with the HHL algorithm to solve sparse linear systems more efficiently. The classical GPU parallelism is utilised to preprocess and precondition the matrix, reducing its condition number, while quantum computing is employed to solve the preconditioned system using the HHL algorithm. Additionally, the algorithm integrates machine learning models, particularly reinforcement learning, to dynamically optimise system parameters, such as block sizes and preconditioning stratgies, based on real-time performance data. Our experimental results show that the proposed approach not only surpasses traditional methods in speed and scalability but also mitigates some of the inherent limitations of quantum algorithms. This work pushes the boundaries of efficient computing and provides a foundation for future advancements in hybrid computational frameworks.
Related papers
- Integrating Quantum Algorithms Into Classical Frameworks: A Predictor-corrector Approach Using HHL [0.562479170374811]
We adapt a well-known algorithm for linear systems of equations, originally proposed by Harrow, Hassidim and Lloyd (HHL), by adapting it into a predictor-corrector instead of a direct solver.
This strategy enables the intelligent omission of computationally costly steps commonly found in many classical algorithms, while simultaneously mitigating the notorious readout problems associated with extracting a quantum state.
The versatility of the approach is illustrated through applications in various fields such as smoothed particle hydrodynamics, plasma simulations, and reactive flow configurations.
arXiv Detail & Related papers (2024-06-28T15:31:10Z) - A Catalyst Framework for the Quantum Linear System Problem via the Proximal Point Algorithm [9.804179673817574]
We propose a new quantum algorithm for the quantum linear system problem (QLSP) inspired by the classical proximal point algorithm (PPA)
Our proposed method can be viewed as a meta-algorithm that allows inverting a modified matrix via an existing texttimattQLSP_solver.
By carefully choosing the step size $eta$, the proposed algorithm can effectively precondition the linear system to mitigate the dependence on condition numbers that hindered the applicability of previous approaches.
arXiv Detail & Related papers (2024-06-19T23:15:35Z) - Preconditioning for a Variational Quantum Linear Solver [0.0]
We numerically demonstrate a notable reduction in the required ansatz depth, demonstrating that preconditioning is useful for quantum algorithms.
Our findings suggest that combining classical computing techniques, such as preconditioning, with quantum algorithms can significantly enhance the performance of NISQ algorithms.
arXiv Detail & Related papers (2023-12-25T08:50:22Z) - Fast, Scalable, Warm-Start Semidefinite Programming with Spectral
Bundling and Sketching [53.91395791840179]
We present Unified Spectral Bundling with Sketching (USBS), a provably correct, fast and scalable algorithm for solving massive SDPs.
USBS provides a 500x speed-up over the state-of-the-art scalable SDP solver on an instance with over 2 billion decision variables.
arXiv Detail & Related papers (2023-12-19T02:27:22Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
We present an efficient algorithm based on convex optimization of combinations of quantum states to solve for banded circulant linear systems.
By decomposing banded circulant matrices into cyclic permutations, our approach produces approximate solutions to such systems with a combination of quantum states linear to $K$.
We validate our methods with classical simulations and actual IBM quantum computer implementation, showcasing their applicability for solving physical problems such as heat transfer.
arXiv Detail & Related papers (2023-09-20T16:27:16Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Integer Programming from Quantum Annealing and Open Quantum Systems [0.8049701904919515]
We develop an algorithm that solves integer linear programming problems, a classically NP-hard problem, on a quantum annealer.
We find that the algorithm outperforms random guessing but is limited to small problems.
arXiv Detail & Related papers (2020-09-24T22:18:01Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.