論文の概要: SynthFormer: Equivariant Pharmacophore-based Generation of Molecules for Ligand-Based Drug Design
- arxiv url: http://arxiv.org/abs/2410.02718v1
- Date: Thu, 3 Oct 2024 17:38:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 01:23:03.359036
- Title: SynthFormer: Equivariant Pharmacophore-based Generation of Molecules for Ligand-Based Drug Design
- Title(参考訳): SynthFormer:リガンド系医薬品設計のための等価な薬理フォア系分子の生成
- Authors: Zygimantas Jocys, Henriette M. G. Willems, Katayoun Farrahi,
- Abstract要約: 本稿では, サイリコ生成法とin vitroにおける実用的手法のギャップについて考察する。
医薬品の3次元同変エンコーダを用いて、完全に合成可能な分子を生成する新しいMLモデルであるSynthFormerを紹介する。
我々の貢献には、3D情報を用いた効率的な化学空間探索のための新しい方法論、分子に3D薬局表現を翻訳するSynthformerと呼ばれる新しいアーキテクチャ、医薬品発見最適化のための試薬を組織する有意義な埋め込み空間が含まれる。
- 参考スコア(独自算出の注目度): 1.3927943269211591
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Drug discovery is a complex and resource-intensive process, with significant time and cost investments required to bring new medicines to patients. Recent advancements in generative machine learning (ML) methods offer promising avenues to accelerate early-stage drug discovery by efficiently exploring chemical space. This paper addresses the gap between in silico generative approaches and practical in vitro methodologies, highlighting the need for their integration to optimize molecule discovery. We introduce SynthFormer, a novel ML model that utilizes a 3D equivariant encoder for pharmacophores to generate fully synthesizable molecules, constructed as synthetic trees. Unlike previous methods, SynthFormer incorporates 3D information and provides synthetic paths, enhancing its ability to produce molecules with good docking scores across various proteins. Our contributions include a new methodology for efficient chemical space exploration using 3D information, a novel architecture called Synthformer for translating 3D pharmacophore representations into molecules, and a meaningful embedding space that organizes reagents for drug discovery optimization. Synthformer generates molecules that dock well and enables effective late-stage optimization restricted by synthesis paths.
- Abstract(参考訳): 薬物発見は複雑で資源集約的なプロセスであり、新しい薬を患者に提供するのにかなりの時間と費用がかかる。
生成機械学習(ML)手法の最近の進歩は、化学空間を効率的に探索することで、早期の薬物発見を加速する有望な道を提供する。
本稿では,分子の発見を最適化する統合の必要性を浮き彫りにして,シリコ生成アプローチと実用的in vitro方法論のギャップを解消する。
合成木として構築された完全合成可能な分子を生成するために,薬品の3次元同変エンコーダを利用する新しいMLモデルであるSynthFormerを紹介する。
従来の方法とは異なり、SynthFormerは3D情報を取り込み、合成経路を提供し、様々なタンパク質のドッキングスコアが良い分子を生産する能力を高める。
我々の貢献には、3D情報を用いた効率的な化学空間探索のための新しい方法論、分子に3D薬局表現を翻訳するSynthformerと呼ばれる新しいアーキテクチャ、医薬品発見最適化のための試薬を組織する有意義な埋め込み空間が含まれる。
Synthformerはドッキングする分子を生成し、合成経路によって制限された効率的な後期最適化を可能にする。
関連論文リスト
- SDDBench: A Benchmark for Synthesizable Drug Design [31.739548311094843]
分子合成性を評価するための新しいデータ駆動計量を提案する。
提案したラウンドトリップスコアを用いて,分子の合成経路の実現可能性を直接評価する。
提案手法の有効性を示すため, 分子生成モデルを用いて, 探索成功率とともに, ラウンドトリップスコアの総合評価を行う。
論文 参考訳(メタデータ) (2024-11-13T03:08:33Z) - Generative Artificial Intelligence for Navigating Synthesizable Chemical Space [25.65907958071386]
合成可能な化学空間を効率的に探索・ナビゲートするための生成モデリングフレームワークであるSynFormerを紹介する。
拡張性のあるトランスフォーマーアーキテクチャとブロック選択のための拡散モジュールを組み込むことで、SynFormerは合成可能な分子設計において既存のモデルを超えている。
論文 参考訳(メタデータ) (2024-10-04T15:09:05Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chemは150億のパラメータを持つ大規模な言語モデルであり、再合成予測の強化に最適化されている。
我々のモデルは幅広い化学知識を捉え、反応条件の正確な予測を可能にする。
この開発により、化学者は新しい化合物を十分に扱うことができ、医薬品製造と材料科学の革新サイクルを早める可能性がある。
論文 参考訳(メタデータ) (2024-08-19T05:17:40Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
標的タンパク質の構造に基づくデノボ薬物の設計は、新規な薬物候補を提供することができる。
そこで本研究では,特定のターゲットに対して,対象薬物をスクラッチから直接生成できるTamGentという生成ソリューションを提案する。
論文 参考訳(メタデータ) (2022-08-30T09:32:39Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - RetroGNN: Approximating Retrosynthesis by Graph Neural Networks for De
Novo Drug Design [75.14290780116002]
我々は、再合成計画ソフトウェアの出力を近似するために、ディープグラフニューラルネットワークを訓練する。
提案手法では, 薬剤的特性は良好であり, 合成が容易であるにもかかわらず, 抗生物質である可能性が示唆された分子について検討した。
論文 参考訳(メタデータ) (2020-11-25T22:04:16Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
ド・ノボ薬物設計のための強化学習(RL)を利用した新しい前方合成フレームワークを提案する。
このセットアップでは、エージェントは巨大な合成可能な化学空間をナビゲートする。
本研究は,合成可能な化学空間を根本的に拡張する上で,エンド・ツー・エンド・トレーニングが重要なパラダイムであることを示す。
論文 参考訳(メタデータ) (2020-04-26T21:40:03Z) - The Synthesizability of Molecules Proposed by Generative Models [3.032184156362992]
機能性分子の発見は高価で時間を要するプロセスである。
初期の薬物発見への関心が高まる技術のひとつに、デ・ノボの分子生成と最適化がある。
これらの手法は、多目的関数の最大化を目的とした新しい分子構造を示唆することができる。
しかし、これらのアプローチの実用性は、合成可能性の無知によって汚される。
論文 参考訳(メタデータ) (2020-02-17T15:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。