A Data Envelopment Analysis Approach for Assessing Fairness in Resource Allocation: Application to Kidney Exchange Programs
- URL: http://arxiv.org/abs/2410.02799v1
- Date: Wed, 18 Sep 2024 15:17:43 GMT
- Title: A Data Envelopment Analysis Approach for Assessing Fairness in Resource Allocation: Application to Kidney Exchange Programs
- Authors: Ali Kaazempur-Mofrad, Xiaowu Dai,
- Abstract summary: We present a novel framework leveraging Data Envelopment Analysis (DEA) to evaluate fairness criteria.
We analyze Priority fairness through waitlist durations, Access fairness through Kidney Donor Profile Index scores, and Outcome fairness through graft lifespan.
Our study provides a rigorous framework for evaluating fairness in complex resource allocation systems.
- Score: 3.130722489512822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kidney exchange programs have significantly increased transplantation rates but raise pressing questions about fairness in organ allocation. We present a novel framework leveraging Data Envelopment Analysis (DEA) to evaluate multiple fairness criteria--Priority, Access, and Outcome--within a single model, capturing complexities that may be overlooked in single-metric analyses. Using data from the United Network for Organ Sharing, we analyze these criteria individually, measuring Priority fairness through waitlist durations, Access fairness through Kidney Donor Profile Index scores, and Outcome fairness through graft lifespan. We then apply our DEA model to demonstrate significant disparities in kidney allocation efficiency across ethnic groups. To quantify uncertainty, we employ conformal prediction within the DEA framework, yielding group-conditional prediction intervals with finite sample coverage guarantees. Our findings show notable differences in efficiency distributions between ethnic groups. Our study provides a rigorous framework for evaluating fairness in complex resource allocation systems, where resource scarcity and mutual compatibility constraints exist. All code for using the proposed method and reproducing results is available on GitHub.
Related papers
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Individual Fairness Through Reweighting and Tuning [0.23395944472515745]
Inherent bias within society can be amplified and perpetuated by artificial intelligence (AI) systems.
Recently, Graph Laplacian Regularizer (GLR) has been used as a substitute for the common Lipschitz condition to enhance individual fairness.
In this work, we investigated whether defining a GLR independently on the train and target data could maintain similar accuracy.
arXiv Detail & Related papers (2024-05-02T20:15:25Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
We study fair machine learning (ML) under predictive uncertainty to enable reliable and trustworthy decision-making.
We propose Equal Opportunity of Coverage (EOC) that aims to achieve two properties: (1) coverage rates for different groups with similar outcomes are close, and (2) the coverage rate for the entire population remains at a predetermined level.
arXiv Detail & Related papers (2023-11-03T21:19:59Z) - Dr. FERMI: A Stochastic Distributionally Robust Fair Empirical Risk
Minimization Framework [12.734559823650887]
In the presence of distribution shifts, fair machine learning models may behave unfairly on test data.
Existing algorithms require full access to data and cannot be used when small batches are used.
This paper proposes the first distributionally robust fairness framework with convergence guarantees that do not require knowledge of the causal graph.
arXiv Detail & Related papers (2023-09-20T23:25:28Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - FaiREE: Fair Classification with Finite-Sample and Distribution-Free
Guarantee [40.10641140860374]
FaiREE is a fair classification algorithm that can satisfy group fairness constraints with finite-sample and distribution-free theoretical guarantees.
FaiREE is shown to have favorable performance over state-of-the-art algorithms.
arXiv Detail & Related papers (2022-11-28T05:16:20Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Towards a Fairness-Aware Scoring System for Algorithmic Decision-Making [35.21763166288736]
We propose a general framework to create data-driven fairness-aware scoring systems.
We show that the proposed framework provides practitioners or policymakers great flexibility to select their desired fairness requirements.
arXiv Detail & Related papers (2021-09-21T09:46:35Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - Fast Fair Regression via Efficient Approximations of Mutual Information [0.0]
This paper introduces fast approximations of the independence, separation and sufficiency group fairness criteria for regression models.
It uses such approximations as regularisers to enforce fairness within a regularised risk minimisation framework.
Experiments in real-world datasets indicate that in spite of its superior computational efficiency our algorithm still displays state-of-the-art accuracy/fairness tradeoffs.
arXiv Detail & Related papers (2020-02-14T08:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.