論文の概要: An explainable approach to detect case law on housing and eviction issues within the HUDOC database
- arxiv url: http://arxiv.org/abs/2410.02978v1
- Date: Thu, 3 Oct 2024 20:39:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 04:45:27.593874
- Title: An explainable approach to detect case law on housing and eviction issues within the HUDOC database
- Title(参考訳): HUDOCデータベースにおける居住・退去問題に関する事例法則に関する説明可能なアプローチ
- Authors: Mohammad Mohammadi, Martijn Wieling, Michel Vols,
- Abstract要約: 訴訟法は、適切な住居の権利を含む、人権に対する私たちの理解を形作るのに役立ちます。
HUDOCデータベースは、欧州人権裁判所からケースローのテキストコンテンツへのアクセスを提供する。
本研究は,住宅・退去問題に関連する事例を検出するモデルを構築した。
- 参考スコア(独自算出の注目度): 6.472397166280682
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Case law is instrumental in shaping our understanding of human rights, including the right to adequate housing. The HUDOC database provides access to the textual content of case law from the European Court of Human Rights (ECtHR), along with some metadata. While this metadata includes valuable information, such as the application number and the articles addressed in a case, it often lacks detailed substantive insights, such as the specific issues a case covers. This underscores the need for detailed analysis to extract such information. However, given the size of the database - containing over 40,000 cases - an automated solution is essential. In this study, we focus on the right to adequate housing and aim to build models to detect cases related to housing and eviction issues. Our experiments show that the resulting models not only provide performance comparable to more sophisticated approaches but are also interpretable, offering explanations for their decisions by highlighting the most influential words. The application of these models led to the identification of new cases that were initially overlooked during data collection. This suggests that NLP approaches can be effectively applied to categorise case law based on the specific issues they address.
- Abstract(参考訳): 訴訟法は、適切な住居の権利を含む人権の理解を形作るのに役立ちます。
HUDOCデータベースは、欧州人権裁判所(ECtHR)から、いくつかのメタデータとともにケースローのテキストコンテンツへのアクセスを提供する。
このメタデータには、アプリケーション番号やケースに割り当てられた記事などの貴重な情報が含まれているが、ケースがカバーする特定の問題のような、詳細な実体的な洞察が欠けていることが多い。
このことは、そのような情報を抽出するための詳細な分析の必要性を浮き彫りにする。
しかし、データベースのサイズ(4万以上のケースを含む)を考えると、自動化されたソリューションが不可欠です。
本研究では,適切な居住権に着目し,住宅・退去問題に関連する事例を検出するモデルの構築を目的とする。
実験の結果, 得られたモデルは, より洗練されたアプローチに匹敵する性能を提供するだけでなく, 最も影響力のある単語を強調することによって, その決定を説明できることがわかった。
これらのモデルの適用により、データ収集中に最初に見落とされた新しいケースの特定につながった。
このことは、NLPアプローチが、対処する特定の問題に基づいて、ケースローの分類に効果的に適用可能であることを示唆している。
関連論文リスト
- Enhancing Legal Case Retrieval via Scaling High-quality Synthetic Query-Candidate Pairs [67.54302101989542]
判例検索は、ある事実記述の参照として類似した事例を提供することを目的としている。
既存の作業は主に、長いクエリを使ったケース・ツー・ケースの検索に重点を置いている。
データスケールは、既存のデータハングリーニューラルネットワークのトレーニング要件を満たすには不十分である。
論文 参考訳(メタデータ) (2024-10-09T06:26:39Z) - Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation [22.85652668826498]
本稿では,大言語モデル(LLM)に基づく法的な知識誘導型事例修正手法であるKELLERを紹介する。
犯罪や法律記事に関する専門的な法的知識を取り入れることで、大規模な言語モデルにより、原訴訟を犯罪の簡潔なサブファクトに正確に修正することができる。
論文 参考訳(メタデータ) (2024-06-28T08:59:45Z) - Lazy Data Practices Harm Fairness Research [49.02318458244464]
本稿では,公正な機械学習データセットを包括的に分析し,不反射的手法がアルゴリズム的公正度発見の到達度と信頼性をいかに妨げているかを示す。
本分析では,(1)データと評価における特定の保護属性の表現のテクスブフラック,(2)データ前処理におけるマイノリティの広汎なテキストbf,(3)フェアネス研究の一般化を脅かすテキストbfopaqueデータ処理の3つの分野について検討した。
この研究は、公正なMLにおけるデータプラクティスの批判的な再評価の必要性を強調し、データセットのソーシングと使用の両方を改善するための指針を提供する。
論文 参考訳(メタデータ) (2024-04-26T09:51:24Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Combining topic modelling and citation network analysis to study case
law from the European Court on Human Rights on the right to respect for
private and family life [0.0]
本論は欧州人権条約第8条における欧州人権裁判所の事例法に焦点をあてる。
第8条の事例法を見つけ,整理するために,トピックモデリングと引用ネットワークの可能性を実証し,比較する。
本研究では,Aricle 8 のケース法則を根拠として,手作業で収集・注釈付けしたデータセットに組み合わせた手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-01-19T14:30:35Z) - LeCaRDv2: A Large-Scale Chinese Legal Case Retrieval Dataset [20.315416393247247]
大規模法ケース検索データセットLeCaRDv2(バージョン2)を紹介する。
800のクエリと430万件の刑事事件文書から抽出された55,192の候補で構成されている。
評価,ペナルティ,手順の3つの重要な側面を考慮し,既存の関連基準を充実させる。
データセットのすべてのケースは、刑事法を専門とする複数の法律専門家によって注釈付けされています。
論文 参考訳(メタデータ) (2023-10-26T17:32:55Z) - MUSER: A Multi-View Similar Case Retrieval Dataset [65.36779942237357]
類似事例検索(SCR)は、司法公正の促進に重要な役割を果たす代表的法的AIアプリケーションである。
既存のSCRデータセットは、ケース間の類似性を判断する際にのみ、事実記述セクションにフォーカスする。
本稿では,多視点類似度測定に基づく類似事例検索データセットMと,文レベル法定要素アノテーションを用いた包括的法定要素を提案する。
論文 参考訳(メタデータ) (2023-10-24T08:17:11Z) - CaseEncoder: A Knowledge-enhanced Pre-trained Model for Legal Case
Encoding [15.685369142294693]
CaseEncoderは、データサンプリングと事前トレーニングフェーズの両方において、きめ細かい法的な知識を活用する法律文書エンコーダである。
CaseEncoderは、ゼロショットの判例検索において、既存の一般的な事前訓練モデルと法律固有の事前訓練モデルの両方を著しく上回っている。
論文 参考訳(メタデータ) (2023-05-09T12:40:19Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Legal Element-oriented Modeling with Multi-view Contrastive Learning for
Legal Case Retrieval [3.909749182759558]
本稿では,多視点コントラスト学習目標を用いた訴訟検索のための対話型ネットワークを提案する。
ケースビューコントラスト学習は、関連する訴訟表現の間の隠れた空間距離を最小化する。
ケースの法的な要素を検出するために、法的な要素の知識を意識した指標を用いています。
論文 参考訳(メタデータ) (2022-10-11T06:47:23Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
本稿では,DQNエージェントが,離散的かつ連続的な状態空間を持つ環境でどのように動作するかを予備的,実験的に検討する。
その結果,非決定論的暗号が存在する場合でも,エージェントは依然として小さな状態空間で学習することができるが,より複雑な環境では性能が低下することがわかった。
論文 参考訳(メタデータ) (2021-09-16T21:59:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。