論文の概要: Geometry is All You Need: A Unified Taxonomy of Matrix and Tensor Factorization for Compression of Generative Language Models
- arxiv url: http://arxiv.org/abs/2410.03040v1
- Date: Thu, 3 Oct 2024 23:12:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 04:16:10.899540
- Title: Geometry is All You Need: A Unified Taxonomy of Matrix and Tensor Factorization for Compression of Generative Language Models
- Title(参考訳): Geometry is all you need: A Unified Taxonomy of Matrix and Tensor Factorization for Compression of Generative Language Models
- Authors: Mingxue Xu, Sadia Sharmin, Danilo P. Mandic,
- Abstract要約: 言語モデルパラメトリゼーションのための行列とテンソル誘導パラメトリゼーションの間の内部リンクは、よく理解されていない。
既存の行列とテンソルの研究は数学が重く、機械学習(ML)やNLPの研究概念から遠く離れている。
本稿では,MLおよびNLP研究において,行列/テンソル圧縮アプローチとモデル圧縮概念を橋渡しする統一分類法を提案する。
- 参考スコア(独自算出の注目度): 22.593517716611597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matrix and tensor-guided parametrization for Natural Language Processing (NLP) models is fundamentally useful for the improvement of the model's systematic efficiency. However, the internal links between these two algebra structures and language model parametrization are poorly understood. Also, the existing matrix and tensor research is math-heavy and far away from machine learning (ML) and NLP research concepts. These two issues result in the recent progress on matrices and tensors for model parametrization being more like a loose collection of separate components from matrix/tensor and NLP studies, rather than a well-structured unified approach, further hindering algorithm design. To this end, we propose a unified taxonomy, which bridges the matrix/tensor compression approaches and model compression concepts in ML and NLP research. Namely, we adopt an elementary concept in linear algebra, that of a subspace, which is also the core concept in geometric algebra, to reformulate the matrix/tensor and ML/NLP concepts (e.g. attention mechanism) under one umbrella. In this way, based on our subspace formalization, typical matrix and tensor decomposition algorithms can be interpreted as geometric transformations. Finally, we revisit recent literature on matrix- or tensor-guided language model compression, rephrase and compare their core ideas, and then point out the current research gap and potential solutions.
- Abstract(参考訳): 自然言語処理(NLP)モデルのための行列およびテンソル誘導パラメトリゼーションは、モデルの体系的効率向上に根本的に有用である。
しかし、これらの2つの代数構造と言語モデルのパラメトリゼーションの間の内部リンクは理解されていない。
また、既存の行列とテンソルの研究は数学が重く、機械学習(ML)やNLPの研究概念から遠く離れている。
これらの2つの問題により、モデルパラメトリゼーションのための行列とテンソルの最近の進歩は、十分に構造化された統一的なアプローチではなく、行列/テンソルおよびNLP研究から分離されたコンポーネントの緩い集合のようなものであり、さらにアルゴリズム設計を妨げる。
そこで本研究では,MLおよびNLP研究において,行列/テンソル圧縮アプローチとモデル圧縮概念を橋渡しする統一分類法を提案する。
すなわち、行列/テンソルとML/NLPの概念(例えば注意機構)を1つの傘の下で再構成するために、線型代数の基本的な概念である部分空間(これは幾何学代数の中核概念でもある)を採用する。
このように、我々の部分空間の形式化に基づいて、典型的な行列とテンソル分解アルゴリズムは幾何変換として解釈できる。
最後に、行列またはテンソル誘導言語モデル圧縮に関する最近の文献を再考し、それらの中核となるアイデアを言い換えて比較し、現在の研究ギャップと潜在的な解決策を指摘する。
関連論文リスト
- Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry [63.694184882697435]
グローバル共分散プーリング(GCP)は、高レベルの表現の2階統計を利用して、ディープニューラルネットワーク(DNN)の性能を向上させることが実証されている。
論文 参考訳(メタデータ) (2024-07-15T07:11:44Z) - Optimal Matrix-Mimetic Tensor Algebras via Variable Projection [0.0]
行列緩和性(Matrix mimeticity)は、テンソルを、行列に類似した乗算、分解、解析が可能な作用素として解釈することから生じる。
我々は、データの事前の知識に頼ることなく、最適線形写像と対応するテンソル表現を学習する。
可変射影型アルゴリズムの変換と収束解析の独創性理論を提供する。
論文 参考訳(メタデータ) (2024-06-11T04:52:23Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
パラメータ行列を圧縮する手法として,データフリーなジョイントランクk近似を提案する。
キャリブレーションデータなしで、元の性能の93.43%を維持しながら80%のパラメータのモデルプルーニングを実現する。
論文 参考訳(メタデータ) (2024-02-26T05:51:47Z) - Efficient Compression of Overparameterized Deep Models through
Low-Dimensional Learning Dynamics [10.673414267895355]
本稿ではパラメータ化モデルを用いた新しい圧縮手法を提案する。
本アルゴリズムは, 一般化を損なうことなく, トレーニング効率を2倍以上に向上させる。
論文 参考訳(メタデータ) (2023-11-08T23:57:03Z) - Geometric Clifford Algebra Networks [53.456211342585824]
本稿では,動的システムのモデリングのためのGeometric Clifford Algebra Networks (GCANs)を提案する。
GCANは幾何学的(クリフォード)代数を用いた対称性群変換に基づいている。
論文 参考訳(メタデータ) (2023-02-13T18:48:33Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - Statistical limits of dictionary learning: random matrix theory and the
spectral replica method [28.54289139061295]
ベイズ最適設定における行列記述と辞書学習の複雑なモデルについて考察する。
本稿では, 統計力学とランダム行列理論, スペクトル複製法を組み合わせた新しいレプリカ法を提案する。
論文 参考訳(メタデータ) (2021-09-14T12:02:32Z) - Nonparametric Trace Regression in High Dimensions via Sign Series
Representation [13.37650464374017]
高次元関数の構造的符号系列表現による非パラメトリックトレース回帰モデルのためのフレームワークを開発する。
行列完備化の文脈において、我々のフレームワークは、行列の「符号ランク」と呼ばれるものに基づいて、かなりリッチなモデルへと導かれる。
論文 参考訳(メタデータ) (2021-05-04T22:20:00Z) - FLAMBE: Structural Complexity and Representation Learning of Low Rank
MDPs [53.710405006523274]
この研究は、表現学習の問題に焦点を当てている。
基礎となる(未知の)力学が低階遷移行列に対応するという仮定の下で、表現学習問題と特定の非線形行列分解問題との関連性を示す。
低階遷移モデルにおけるRLの探索と表現学習を行うFLAMBEを開発した。
論文 参考訳(メタデータ) (2020-06-18T19:11:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。