論文の概要: Scalable Frame-based Construction of Sociocultural NormBases for Socially-Aware Dialogues
- arxiv url: http://arxiv.org/abs/2410.03049v1
- Date: Fri, 4 Oct 2024 00:08:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 04:16:10.885661
- Title: Scalable Frame-based Construction of Sociocultural NormBases for Socially-Aware Dialogues
- Title(参考訳): ソーシャル・アウェア・ダイアログのためのスケーラブルなフレームベースによる社会文化的ノルムベースの構築
- Authors: Shilin Qu, Weiqing Wang, Xin Zhou, Haolan Zhan, Zhuang Li, Lizhen Qu, Linhao Luo, Yuan-Fang Li, Gholamreza Haffari,
- Abstract要約: 社会文化的規範は、社会的相互作用における個人的行為の指針となる。
大規模言語モデル(LLM)を用いた社会文化的ノルム(SCN)ベース構築のためのスケーラブルなアプローチを提案する。
我々は、包括的で広くアクセス可能な中国社会文化ノルムベースを構築した。
- 参考スコア(独自算出の注目度): 66.69453609603875
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sociocultural norms serve as guiding principles for personal conduct in social interactions, emphasizing respect, cooperation, and appropriate behavior, which is able to benefit tasks including conversational information retrieval, contextual information retrieval and retrieval-enhanced machine learning. We propose a scalable approach for constructing a Sociocultural Norm (SCN) Base using Large Language Models (LLMs) for socially aware dialogues. We construct a comprehensive and publicly accessible Chinese Sociocultural NormBase. Our approach utilizes socially aware dialogues, enriched with contextual frames, as the primary data source to constrain the generating process and reduce the hallucinations. This enables extracting of high-quality and nuanced natural-language norm statements, leveraging the pragmatic implications of utterances with respect to the situation. As real dialogue annotated with gold frames are not readily available, we propose using synthetic data. Our empirical results show: (i) the quality of the SCNs derived from synthetic data is comparable to that from real dialogues annotated with gold frames, and (ii) the quality of the SCNs extracted from real data, annotated with either silver (predicted) or gold frames, surpasses that without the frame annotations. We further show the effectiveness of the extracted SCNs in a RAG-based (Retrieval-Augmented Generation) model to reason about multiple downstream dialogue tasks.
- Abstract(参考訳): 社会文化の規範は、社会的相互作用における個人的行為の指針として機能し、尊敬、協力、適切な行動を強調し、会話情報検索、文脈情報検索、検索強化機械学習といったタスクに役立てることができる。
本稿では,大規模言語モデル(LLM)を用いた社会文化的ノルム(SCN)ベースを構築するためのスケーラブルなアプローチを提案する。
我々は、包括的で広くアクセス可能な中国社会文化ノルムベースを構築した。
提案手法は,コンテキストフレームに富んだ社会認識対話を主データ源として利用し,生成過程の制約と幻覚の低減を図る。
これにより、状況に関する発話の実践的な意味を生かし、高品質でニュアンスのある自然言語のノルム文を抽出することができる。
金フレームを付加した実対話は容易には利用できないため、合成データを用いて提案する。
私たちの経験的結果は以下のとおりです。
(i)合成データから得られるSCNの品質は、金枠に注釈を付けた実際の対話に匹敵するものであり、
(II) 実データから抽出したSCNの品質は、銀(予測)または金のフレームで注釈付けされ、フレームアノテーションを使わずにそれを超える。
さらに、複数の下流対話タスクを推論するRAGモデル(Retrieval-Augmented Generation)モデルにおいて、抽出したSCNの有効性を示す。
関連論文リスト
- DiaSynth: Synthetic Dialogue Generation Framework for Low Resource Dialogue Applications [18.378069426713]
既存の研究は、対話システムの訓練に十分なスケールが欠けている一般またはニッチなデータセットによって制約されている。
本稿では,高品質で文脈的にリッチな対話を生成可能な合成対話生成フレームワークであるDia Synthを紹介する。
我々は,異なるLLMを用いて合成データを生成し,DialogSum とSAMSum を例に挙げて実験を行った。
論文 参考訳(メタデータ) (2024-09-25T07:03:31Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最重要位置を占める。
最近の取り組みは、プレトレーニング言語モデル(PLM)を統合することでこれらの課題を緩和しようとしている。
CTR予測のためのtextbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA)を提案する。
論文 参考訳(メタデータ) (2024-05-17T07:43:25Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
会話レコメンデータシステム(CRS)は,自然言語会話を通じてユーザの嗜好を喚起することで,ユーザに対して関連項目を推薦することを目的としている。
先行作業では、アイテムのセマンティック情報、対話生成のための言語モデル、関連する項目のランク付けのためのレコメンデーションモジュールとして、外部知識グラフを利用することが多い。
本稿では、自然言語の項目を表現し、CRSを自然言語処理タスクとして定式化する。
論文 参考訳(メタデータ) (2024-01-25T14:07:34Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - AUGUST: an Automatic Generation Understudy for Synthesizing
Conversational Recommendation Datasets [56.052803235932686]
本稿では,大規模かつ高品質なレコメンデーションダイアログを生成する新しい自動データセット合成手法を提案する。
i)従来のレコメンデーションデータセットからの豊富なパーソナライズされたユーザプロファイル、(ii)知識グラフからの豊富な外部知識、(iii)人間対人間会話レコメンデーションデータセットに含まれる会話能力。
論文 参考訳(メタデータ) (2023-06-16T05:27:14Z) - The Whole Truth and Nothing But the Truth: Faithful and Controllable
Dialogue Response Generation with Dataflow Transduction and Constrained
Decoding [65.34601470417967]
本稿では,ニューラルネットワークモデリングとルールベース生成の強みを組み合わせた対話応答生成のためのハイブリッドアーキテクチャについて述べる。
本実験により, 本システムは, 流布性, 妥当性, 真理性の評価において, ルールベースおよび学習的アプローチの両方に優れることがわかった。
論文 参考訳(メタデータ) (2022-09-16T09:00:49Z) - Emotion Recognition in Conversation using Probabilistic Soft Logic [17.62924003652853]
会話における感情認識(英: emotion recognition in conversation、ERC)とは、2つ以上の発話を含む会話に焦点を当てた感情認識のサブフィールドである。
我々は,宣言的テンプレート言語である確率的ソフト論理(PSL)にアプローチを実装した。
PSLは、ニューラルモデルからPSLモデルへの結果の取り込みのための機能を提供する。
提案手法を最先端の純粋ニューラルネットワークERCシステムと比較した結果,約20%の改善が得られた。
論文 参考訳(メタデータ) (2022-07-14T23:59:06Z) - Commonsense-Focused Dialogues for Response Generation: An Empirical
Study [39.49727190159279]
対話応答生成におけるコモンセンスの実証的研究について述べる。
まず、ConceptNetを利用して既存の対話データセットから共通感覚対話を自動的に抽出する。
次に、対話的な環境での社会的常識を示すことを目的とした、25K対話を備えた対話データセットを新たに収集する。
論文 参考訳(メタデータ) (2021-09-14T04:32:09Z) - Graph Based Network with Contextualized Representations of Turns in
Dialogue [0.0]
対話に基づく関係抽出(RE)は、対話に現れる2つの引数間の関係を抽出することを目的としている。
本稿では,対話の理解方法に着目したTUCORE-GCN(TUrn Context aware Graph Convolutional Network)を提案する。
論文 参考訳(メタデータ) (2021-09-09T03:09:08Z) - Dialogue Discourse-Aware Graph Convolutional Networks for Abstractive
Meeting Summarization [24.646506847760822]
会議要約のための対話談-Aware Graph Convolutional Networks (DDA-GCN) を開発する。
まず,対話談話関係を用いた会議テキスト全体を談話グラフに変換し,それからDDA-GCNを用いてそのグラフの意味表現を符号化する。
最後に,再帰的ニューラルネットワークを用いて要約を生成する。
論文 参考訳(メタデータ) (2020-12-07T07:51:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。