論文の概要: Examining Racial Stereotypes in YouTube Autocomplete Suggestions
- arxiv url: http://arxiv.org/abs/2410.03102v1
- Date: Fri, 4 Oct 2024 02:53:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 03:46:34.609570
- Title: Examining Racial Stereotypes in YouTube Autocomplete Suggestions
- Title(参考訳): YouTubeのオートコンプリート提案における人種ステレオタイプの検討
- Authors: Eunbin Ha, Haein Kong, Shagun Jhaver,
- Abstract要約: 我々は、YouTubeのオートコンプリートが、人種に関する情報を探索するユーザーのための情報ソースとしてどのように機能するかを検討する。
批判的談話分析を用いて、人種バイアスが現れる5つの主要な社会文化的文脈を同定する。
- 参考スコア(独自算出の注目度): 1.297210402524609
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Autocomplete is a popular search feature that predicts queries based on user input and guides users to a set of potentially relevant suggestions. In this study, we examine how YouTube autocompletes serve as an information source for users exploring information about race. We perform an algorithm output audit of autocomplete suggestions for input queries about four racial groups and examine the stereotypes they embody. Using critical discourse analysis, we identify five major sociocultural contexts in which racial biases manifest -- Appearance, Ability, Culture, Social Equity, and Manner. Our results show evidence of aggregated discrimination and interracial tensions in the autocompletes we collected and highlight their potential risks in othering racial minorities. We call for urgent innovations in content moderation policy design and enforcement to address these biases in search outputs.
- Abstract(参考訳): Autocompleteは、ユーザ入力に基づいてクエリを予測し、潜在的に関連性のある提案のセットにユーザーを誘導する人気のある検索機能である。
本研究では、YouTubeのオートコンプリートが、人種情報を探究するユーザーのための情報ソースとしてどのように機能するかを検討する。
本研究では、4つの人種グループに関する入力クエリに対する自動完全提案のアルゴリズム出力監査を行い、それらが具現化するステレオタイプについて検討する。
批判的談話分析を用いて、人種的偏見が現れる5つの主要な社会文化的文脈(外観、能力、文化、社会的平等、マナー)を同定する。
以上の結果から,我々の収集したオートコンプリートにおける差別と人種間緊張の集合的証拠が示され,他の人種的マイノリティの潜在的なリスクを浮き彫りにした。
我々は、コンテンツモデレーションポリシーの設計と、検索アウトプットにおけるこれらのバイアスに対処するための実施において、緊急のイノベーションを求めている。
関連論文リスト
- Investigating Bias in Political Search Query Suggestions by Relative Comparison with LLMs [1.5356574175312299]
検索クエリの提案のバイアスは、バイアスされた検索結果に露出し、意見の形成に影響を与える可能性がある。
我々は、英語の検索クエリー提案において、バイアスを特定し定量化するために、多段階のアプローチを用いる。
われわれのアプローチを米国の政治ニュース分野に適用し、GoogleとBingの偏見を比較する。
論文 参考訳(メタデータ) (2024-10-31T12:40:38Z) - A comparison of online search engine autocompletion in Google and Baidu [3.5016560416031886]
本稿では,BaiduとGoogleの2つの言語的・文化的文脈における検索オートコンプリートの特徴について検討する。
2つの検索エンジンの違いは、元のクエリの抑制や修正の仕方にある。
我々の研究は、現在の言語技術においてより洗練され、文化的に敏感なモデレーション戦略の必要性を強調した。
論文 参考訳(メタデータ) (2024-05-03T08:17:04Z) - Sequential Decision-Making for Inline Text Autocomplete [14.83046358936405]
テキスト入力システムにおけるインラインオートコンプリート提案の改善問題について検討する。
我々は、強化学習を用いて、ターゲットユーザとの繰り返しインタラクションを通じて提案ポリシーを学習する。
論文 参考訳(メタデータ) (2024-03-21T22:33:16Z) - Are Personalized Stochastic Parrots More Dangerous? Evaluating Persona
Biases in Dialogue Systems [103.416202777731]
我々は、対話モデルが採用するペルソナに付随する有害な行動の感度であると定義する「ペルソナバイアス」について検討する。
我々は,人格バイアスを有害な表現と有害な合意のバイアスに分類し,攻撃性,有害継続性,関連性,ステレオタイプ合意,および有害合意の5つの側面において,人格バイアスを測定する包括的な評価枠組みを確立する。
論文 参考訳(メタデータ) (2023-10-08T21:03:18Z) - Seasonality Based Reranking of E-commerce Autocomplete Using Natural
Language Queries [15.37457156804212]
クエリオートコンプリート(QAC)はTypeaheadとしても知られ、検索ボックス内のユーザタイププレフィックスとして完全なクエリのリストを提案する。
typeaheadの目標のひとつは、季節的に重要なユーザに対して、関連するクエリを提案することだ。
本稿では,ニューラルネットワークに基づく自然言語処理(NLP)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-03T21:14:25Z) - Evaluating Verifiability in Generative Search Engines [70.59477647085387]
生成検索エンジンは、インラインの引用とともに、ユーザークエリへの応答を直接生成する。
我々は,一般的な4つの生成検索エンジンの評価を行う。
既存の生成検索エンジンからの応答は流動的であり、情報的に見えるが、しばしばサポートされていない文や不正確な引用を含んでいる。
論文 参考訳(メタデータ) (2023-04-19T17:56:12Z) - The Matter of Chance: Auditing Web Search Results Related to the 2020
U.S. Presidential Primary Elections Across Six Search Engines [68.8204255655161]
私たちは、Google、Baidu、Bing、DuckDuckGo、Yahoo、Yandexの"US Election"、"Donald trump"、"Joe Biden"、"bernie Sanders"の検索結果を調べます。
その結果, 検索エンジン間の検索結果と, エージェント間の検索結果の相違が有意な差があることが示唆された。
論文 参考訳(メタデータ) (2021-05-03T11:18:19Z) - One Label, One Billion Faces: Usage and Consistency of Racial Categories
in Computer Vision [75.82110684355979]
顔画像の分類的人種ラベルを提供するコンピュータビジョンデータセットによって符号化された人種システムについて検討する。
各データセットは、名目上等価な人種分類にもかかわらず、かなりユニークな人種体系をコードしている。
我々は、人種的カテゴリーがステレオタイプを符号化し、非整合性からステレオタイプへの分類から民族集団を除外する証拠を見出した。
論文 参考訳(メタデータ) (2021-02-03T22:50:04Z) - What Makes a Good Summary? Reconsidering the Focus of Automatic
Summarization [49.600619575148706]
フィールドの現在の焦点は、参加者の希望と完全に一致していないことがわかります。
以上の結果から,自動要約のより広い視点を取り入れることが重要であると論じる。
論文 参考訳(メタデータ) (2020-12-14T15:12:35Z) - On the Social and Technical Challenges of Web Search Autosuggestion
Moderation [118.47867428272878]
自動提案は通常、検索ログと文書表現のコーパスに基づいてトレーニングされた機械学習(ML)システムによって生成される。
現在の検索エンジンは、このような問題のある提案を抑えるのに、ますます熟練している。
問題のある提案のいくつかの側面、パイプラインに沿った困難な問題、そしてWeb検索を超えたアプリケーションの増加になぜ私たちの議論が適用されるのかについて論じる。
論文 参考訳(メタデータ) (2020-07-09T19:22:00Z) - Using Noisy Self-Reports to Predict Twitter User Demographics [17.288865276460527]
本稿では,Twitterのプロフィールから人種・民族の自己申告を識別する手法を提案する。
自動監視に固有の誤りにもかかわらず、金の標準自己報告調査データに基づいて、優れた性能のモデルを作成する。
論文 参考訳(メタデータ) (2020-05-01T22:10:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。