論文の概要: Specification Slicing for VDM-SL
- arxiv url: http://arxiv.org/abs/2410.03180v1
- Date: Fri, 4 Oct 2024 06:35:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 03:14:31.064001
- Title: Specification Slicing for VDM-SL
- Title(参考訳): VDM-SLの仕様スライシング
- Authors: Tomohiro Oda, Han-Myung Chang,
- Abstract要約: 本稿では,プログラムスライシングに基づいて,VDM-SLの仕様スライシングを定義する。
VDM-SL のスライサは ViennaTalk で実装されており、ブラウザや VDM-SL 仕様を記述するデバッガで使用することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The executable specification is one of the powerful tools in lightweight formal software development. VDM-SL allows the explicit and executable definition of operations that reference and update internal state through imperative statements. While the extensive executable subset of VDM-SL enables validation and testing in the specification phase, it also brings difficulties in reading and debugging as in imperative programming. In this paper, we define specification slicing for VDM-SL based on program slicing, a technique used for debugging and maintaining program source code in implementation languages. We then present and discuss its applications. The slicer for VDM-SL is implemented on ViennaTalk and can be used on browsers and debuggers describing the VDM-SL specification.
- Abstract(参考訳): 実行可能な仕様は、軽量なフォーマルなソフトウェア開発における強力なツールの1つです。
VDM-SLは命令文を通じて内部状態を参照して更新する操作の明示的で実行可能な定義を可能にする。
VDM-SLの広範な実行可能なサブセットは仕様段階での検証とテストを可能にするが、命令型プログラミングのように読み書きやデバッグが困難になる。
本稿では,プログラムスライシングに基づくVDM-SLの仕様スライシングを定義する。
そして、その応用を提示し、議論する。
VDM-SL のスライサは ViennaTalk で実装されており、ブラウザや VDM-SL 仕様を記述するデバッガで使用することができる。
関連論文リスト
- NoviCode: Generating Programs from Natural Language Utterances by Novices [59.71218039095155]
初心者非プログラマによるAPIと自然言語記述を入力とする新しいNLプログラミングタスクであるNoviCodeを提示する。
我々は、NoviCodeがコード合成領域における挑戦的なタスクであることを示し、非技術的命令から複雑なコードを生成することは、現在のText-to-Codeパラダイムを超えている。
論文 参考訳(メタデータ) (2024-07-15T11:26:03Z) - Synthetic Programming Elicitation for Text-to-Code in Very Low-Resource Programming and Formal Languages [21.18996339478024]
SPEAC(emphsynthetic programming elicitation and compilation)を紹介する。
SPEACは、より頻繁に、意味的正しさを犠牲にすることなく、構文的に正しいプログラムを生成する。
UCLID5形式検証言語のケーススタディにおいて,SPEACの性能を実証的に評価した。
論文 参考訳(メタデータ) (2024-06-05T22:16:19Z) - Where Visual Speech Meets Language: VSP-LLM Framework for Efficient and Context-Aware Visual Speech Processing [56.71450690166821]
LLM(VSP-LLM)を組み込んだビジュアル音声処理という新しいフレームワークを提案する。
VSP-LLMは、視覚音声認識と翻訳のマルチタスクを実行するように設計されている。
ラベル付きデータのたった30時間で訓練されたVSP-LLMは、唇の動きをより効果的に翻訳できることを示す。
論文 参考訳(メタデータ) (2024-02-23T07:21:32Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Visual Program Distillation: Distilling Tools and Programmatic Reasoning into Vision-Language Models [17.540937747712082]
視覚言語モデル(VLM)を生成する命令チューニングフレームワークである視覚プログラム蒸留(VPD)を提案する。
VPDは、複数の候補プログラムをサンプルにすることで、大きな言語モデルの推論能力を蒸留する。
それぞれの正しいプログラムを推論ステップの言語記述に変換し、VLMに蒸留する。
論文 参考訳(メタデータ) (2023-12-05T18:58:37Z) - The potential of LLMs for coding with low-resource and domain-specific
programming languages [0.0]
本研究は,オープンソースソフトウェアGreetlのハンスル(Hansl)という,econometricスクリプティング言語に焦点を当てたものである。
この結果から, LLMはグレタブルコードの記述, 理解, 改善, 文書化に有用なツールであることが示唆された。
論文 参考訳(メタデータ) (2023-07-24T17:17:13Z) - InstructAlign: High-and-Low Resource Language Alignment via Continual
Crosslingual Instruction Tuning [66.31509106146605]
命令を調整した大規模言語モデル(LLM)は、様々なタスクや言語で顕著な能力を示している。
しかし、利用可能なデータが不足しているため、表現不足の言語に一般化する能力は限られている。
InstructAlignは、LLMが新しい未知の言語を学習済みの高リソース言語と整列できるようにするために、連続的なクロスリンガル命令チューニングを使用する。
論文 参考訳(メタデータ) (2023-05-23T02:51:34Z) - ProgSG: Cross-Modality Representation Learning for Programs in
Electronic Design Automation [38.023395256208055]
高レベル合成(HLS)により、開発者はCとC++のソフトウェアコード形式で高レベルな記述をコンパイルできる。
HLSツールは相変わらず、プラグマで表されるマイクロアーキテクチャの決定を必要とする。
本稿では,ソースコードシーケンスのモダリティとグラフのモダリティを深く,きめ細かな方法で相互に相互作用させることができるProgSGを提案する。
論文 参考訳(メタデータ) (2023-05-18T09:44:18Z) - PEVL: Position-enhanced Pre-training and Prompt Tuning for
Vision-language Models [127.17675443137064]
PEVLを導入し、明示的なオブジェクト位置モデリングによる視覚言語モデルの事前学習と迅速なチューニングを促進する。
PEVLは、統一言語モデリングフレームワークにおいて、離散化されたオブジェクトの位置と言語を再構成する。
PEVLは,表現理解や句の接頭など,位置感性のあるタスクに対して,最先端のパフォーマンスを実現することができることを示す。
論文 参考訳(メタデータ) (2022-05-23T10:17:53Z) - ESPnet-SLU: Advancing Spoken Language Understanding through ESPnet [95.39817519115394]
ESPnet-SLUは、エンドツーエンドの音声処理ツールキットであるESPnetのプロジェクトである。
単一のフレームワークによる音声言語理解の迅速な開発を目的として設計されている。
論文 参考訳(メタデータ) (2021-11-29T17:05:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。