Learning Semantic Structure through First-Order-Logic Translation
- URL: http://arxiv.org/abs/2410.03203v1
- Date: Fri, 4 Oct 2024 07:39:34 GMT
- Title: Learning Semantic Structure through First-Order-Logic Translation
- Authors: Akshay Chaturvedi, Nicholas Asher,
- Abstract summary: We show that language models sometimes confuse which predicates apply to which objects.
We finetune several large language models on synthetic datasets designed to gauge their generalization abilities.
The results show that FOL translation for LLMs is better suited to learn predicate argument structure.
- Score: 4.005483185111992
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we study whether transformer-based language models can extract predicate argument structure from simple sentences. We firstly show that language models sometimes confuse which predicates apply to which objects. To mitigate this, we explore two tasks: question answering (Q/A), and first order logic (FOL) translation, and two regimes, prompting and finetuning. In FOL translation, we finetune several large language models on synthetic datasets designed to gauge their generalization abilities. For Q/A, we finetune encoder models like BERT and RoBERTa and use prompting for LLMs. The results show that FOL translation for LLMs is better suited to learn predicate argument structure.
Related papers
- Transformer-based Language Models for Reasoning in the Description Logic ALCQ [2.8210912543324658]
We construct the natural language dataset, DELTA$_D$, using the expressive description logic language $mathcalALCQ$.
We investigate the logical reasoning capabilities of a supervised fine-tuned DeBERTa-based model and two large language models.
We show that the DeBERTa-based model fine-tuned on our dataset can master the entailment checking task.
arXiv Detail & Related papers (2024-10-12T18:25:34Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
We evaluate 15 typologically diverse languages with existing and newly-created English and multilingual prompts.
We find that Llama Instruct and Mistral models exhibit high degrees of language confusion.
We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning.
arXiv Detail & Related papers (2024-06-28T17:03:51Z) - Shortcomings of LLMs for Low-Resource Translation: Retrieval and Understanding are Both the Problem [4.830018386227]
This work investigates the in-context learning abilities of pretrained large language models (LLMs) when instructed to translate text from a low-resource language into a high-resource language as part of an automated machine translation pipeline.
We conduct a set of experiments translating Southern Quechua to Spanish and examine the informativity of various types of context retrieved from a constrained database of digitized pedagogical materials and parallel corpora.
arXiv Detail & Related papers (2024-06-21T20:02:22Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
We introduce LLM-ST, a novel and effective speech translation model constructed upon a pre-trained large language model (LLM)
By integrating the large language model (LLM) with a speech encoder and employing multi-task instruction tuning, LLM-ST can produce accurate timestamped transcriptions and translations.
Through rigorous experimentation on English and Chinese datasets, we showcase the exceptional performance of LLM-ST.
arXiv Detail & Related papers (2023-12-21T05:32:49Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
We propose a novel framework using examples in comparison to teach LLMs to learn translation.
Our approach involves presenting the model with examples of correct and incorrect translations and using a preference loss to guide the model's learning.
Our findings offer a new perspective on fine-tuning LLMs for translation tasks and provide a promising solution for generating high-quality translations.
arXiv Detail & Related papers (2023-07-10T08:15:40Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT)
This paper systematically investigates the advantages and challenges of LLMs for MMT.
We thoroughly evaluate eight popular LLMs, including ChatGPT and GPT-4.
arXiv Detail & Related papers (2023-04-10T15:51:30Z) - Modeling Sequential Sentence Relation to Improve Cross-lingual Dense
Retrieval [87.11836738011007]
We propose a multilingual multilingual language model called masked sentence model (MSM)
MSM consists of a sentence encoder to generate the sentence representations, and a document encoder applied to a sequence of sentence vectors from a document.
To train the model, we propose a masked sentence prediction task, which masks and predicts the sentence vector via a hierarchical contrastive loss with sampled negatives.
arXiv Detail & Related papers (2023-02-03T09:54:27Z) - Foundations of Symbolic Languages for Model Interpretability [2.3361634876233817]
We study the computational complexity of FOIL queries over two classes of ML models often deemed to be easily interpretable.
We present a prototype implementation of FOIL wrapped in a high-level declarative language.
arXiv Detail & Related papers (2021-10-05T21:56:52Z) - Explicitly Modeling Syntax in Language Models with Incremental Parsing
and a Dynamic Oracle [88.65264818967489]
We propose a new syntax-aware language model: Syntactic Ordered Memory (SOM)
The model explicitly models the structure with an incremental and maintains the conditional probability setting of a standard language model.
Experiments show that SOM can achieve strong results in language modeling, incremental parsing and syntactic generalization tests.
arXiv Detail & Related papers (2020-10-21T17:39:15Z) - Exploring Neural Models for Parsing Natural Language into First-Order
Logic [10.62143644603835]
We study the capability of neural models in parsing English sentences to First-Order Logic (FOL)
We model FOL parsing as a sequence to sequence mapping task where given a natural language sentence, it is encoded into an intermediate representation using an LSTM followed by a decoder which sequentially generates the predicates in the corresponding FOL formula.
arXiv Detail & Related papers (2020-02-16T09:22:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.