An Enhanced Harmonic Densely Connected Hybrid Transformer Network Architecture for Chronic Wound Segmentation Utilising Multi-Colour Space Tensor Merging
- URL: http://arxiv.org/abs/2410.03359v1
- Date: Fri, 4 Oct 2024 12:26:51 GMT
- Title: An Enhanced Harmonic Densely Connected Hybrid Transformer Network Architecture for Chronic Wound Segmentation Utilising Multi-Colour Space Tensor Merging
- Authors: Bill Cassidy, Christian Mcbride, Connah Kendrick, Neil D. Reeves, Joseph M. Pappachan, Cornelius J. Fernandez, Elias Chacko, Raphael BrĂ¼ngel, Christoph M. Friedrich, Metib Alotaibi, Abdullah Abdulaziz AlWabel, Mohammad Alderwish, Kuan-Ying Lai, Moi Hoon Yap,
- Abstract summary: Venous, arterial, diabetic, and pressure wounds are becoming increasingly common globally.
HarDNet segmentation architecture integrates a contrast-eliminating component in the initial layers of the network to enhance feature learning.
This paper presents the first study to focus on darker-skin tones for chronic wound segmentation using models trained only on wound images exhibiting lighter skin.
- Score: 5.480876321372602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chronic wounds and associated complications present ever growing burdens for clinics and hospitals world wide. Venous, arterial, diabetic, and pressure wounds are becoming increasingly common globally. These conditions can result in highly debilitating repercussions for those affected, with limb amputations and increased mortality risk resulting from infection becoming more common. New methods to assist clinicians in chronic wound care are therefore vital to maintain high quality care standards. This paper presents an improved HarDNet segmentation architecture which integrates a contrast-eliminating component in the initial layers of the network to enhance feature learning. We also utilise a multi-colour space tensor merging process and adjust the harmonic shape of the convolution blocks to facilitate these additional features. We train our proposed model using wound images from light-skinned patients and test the model on two test sets (one set with ground truth, and one without) comprising only darker-skinned cases. Subjective ratings are obtained from clinical wound experts with intraclass correlation coefficient used to determine inter-rater reliability. For the dark-skin tone test set with ground truth, we demonstrate improvements in terms of Dice similarity coefficient (+0.1221) and intersection over union (+0.1274). Qualitative analysis showed high expert ratings, with improvements of >3% demonstrated when comparing the baseline model with the proposed model. This paper presents the first study to focus on darker-skin tones for chronic wound segmentation using models trained only on wound images exhibiting lighter skin. Diabetes is highly prevalent in countries where patients have darker skin tones, highlighting the need for a greater focus on such cases. Additionally, we conduct the largest qualitative study to date for chronic wound segmentation.
Related papers
- FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
Diffusion Model (DM) has become a leading method in generating synthetic medical images, but it suffers from a critical twofold bias.
We propose FairSkin, a novel DM framework that mitigates these biases through a three-level resampling mechanism.
Our approach significantly improves the diversity and quality of generated images, contributing to more equitable skin disease detection in clinical settings.
arXiv Detail & Related papers (2024-10-29T21:37:03Z) - Evaluating Machine Learning-based Skin Cancer Diagnosis [0.0]
The research assesses two convolutional neural network architectures: a MobileNet-based model and a custom CNN model.
Both models are evaluated for their ability to classify skin lesions into seven categories and to distinguish between dangerous and benign lesions.
The study concludes that while the models show promise in explainability, further development is needed to ensure fairness across different skin tones.
arXiv Detail & Related papers (2024-09-04T02:44:48Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Visualizing CoAtNet Predictions for Aiding Melanoma Detection [0.0]
This paper proposes a multi-class classification task using the CoAtNet architecture.
It achieves an overall precision of 0.901, recall 0.895, and AP 0.923, indicating high performance compared to other state-of-the-art networks.
arXiv Detail & Related papers (2022-05-21T06:41:52Z) - EdgeMixup: Improving Fairness for Skin Disease Classification and
Segmentation [9.750368551427494]
Skin lesions can be an early indicator of a wide range of infectious and other diseases.
The use of deep learning (DL) models to diagnose skin lesions has great potential in assisting clinicians with prescreening patients.
These models often learn biases inherent in training data, which can lead to a performance gap in the diagnosis of people with light and/or dark skin tones.
arXiv Detail & Related papers (2022-02-28T15:33:31Z) - External Attention Assisted Multi-Phase Splenic Vascular Injury
Segmentation with Limited Data [72.99534552950138]
The spleen is one of the most commonly injured solid organs in blunt abdominal trauma.
accurate segmentation of splenic vascular injury is challenging for the following reasons.
arXiv Detail & Related papers (2022-01-04T02:35:56Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Leveraging Adaptive Color Augmentation in Convolutional Neural Networks
for Deep Skin Lesion Segmentation [0.0]
We propose an adaptive color augmentation technique to amplify data expression and model performance.
We qualitatively identify and verify the semantic structural features learned by the network for discriminating skin lesions against normal skin tissue.
arXiv Detail & Related papers (2020-10-31T00:16:23Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z) - CS-AF: A Cost-sensitive Multi-classifier Active Fusion Framework for
Skin Lesion Classification [9.265557367859637]
Convolutional neural networks (CNNs) have achieved the state-of-the-art performance in skin lesion analysis.
We present CS-AF, a cost-sensitive multi-classifier active fusion framework for skin lesion classification.
arXiv Detail & Related papers (2020-04-25T05:48:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.