論文の概要: Vulnerability Detection via Topological Analysis of Attention Maps
- arxiv url: http://arxiv.org/abs/2410.03470v1
- Date: Fri, 4 Oct 2024 14:40:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 21:59:46.030721
- Title: Vulnerability Detection via Topological Analysis of Attention Maps
- Title(参考訳): 注意図のトポロジ解析による脆弱性検出
- Authors: Pavel Snopov, Andrey Nikolaevich Golubinskiy,
- Abstract要約: 本研究では,トポロジカルデータ解析(TDA)のツールを用いた脆弱性検出手法を提案する。
その結果,従来の機械学習(ML)技術は,これらの注意行列から抽出したトポロジ的特徴を訓練することで,事前学習言語モデル(LLM)と競争的に動作できることが判明した。
これは、永続的ホモロジーを含むTDAツールが、脆弱性を特定するために重要な意味情報を効果的にキャプチャできることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep learning (DL) approaches to vulnerability detection have gained significant traction. These methods demonstrate promising results, often surpassing traditional static code analysis tools in effectiveness. In this study, we explore a novel approach to vulnerability detection utilizing the tools from topological data analysis (TDA) on the attention matrices of the BERT model. Our findings reveal that traditional machine learning (ML) techniques, when trained on the topological features extracted from these attention matrices, can perform competitively with pre-trained language models (LLMs) such as CodeBERTa. This suggests that TDA tools, including persistent homology, are capable of effectively capturing semantic information critical for identifying vulnerabilities.
- Abstract(参考訳): 近年,脆弱性検出に対するディープラーニング(DL)アプローチが注目されている。
これらの手法は有望な結果を示し、多くの場合、従来の静的コード解析ツールをはるかに上回っている。
本研究では,BERTモデルの注意行列に基づくトポロジカルデータ解析(TDA)のツールを用いた脆弱性検出手法を提案する。
従来の機械学習(ML)技術は,これらの注意行列から抽出したトポロジ的特徴に基づいて訓練すると,CodeBERTaのような事前学習言語モデル(LLM)と競合する。
これは、永続的ホモロジーを含むTDAツールが、脆弱性を特定するために重要な意味情報を効果的にキャプチャできることを示している。
関連論文リスト
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - Enhanced Fault Detection and Cause Identification Using Integrated Attention Mechanism [0.3749861135832073]
本研究では、双方向長短期記憶(BiLSTM)ニューラルネットワークと統合注意機構(IAM)を統合することにより、テネシー・イーストマン・プロセス(TEP)内の障害検出と原因特定のための新しい手法を提案する。
IAMは、スケールドドット製品に対する注意力、残留注意力、動的注意力を組み合わせて、TEP障害検出に不可欠な複雑なパターンや依存関係をキャプチャする。
BiLSTMネットワークはこれらの特徴を双方向に処理して長距離依存関係をキャプチャし、IAMは出力をさらに改善し、故障検出結果が改善された。
論文 参考訳(メタデータ) (2024-07-31T12:01:57Z) - MISLEAD: Manipulating Importance of Selected features for Learning Epsilon in Evasion Attack Deception [0.35998666903987897]
回避攻撃は入力データに正確な摂動を導入してモデルを操作し、誤った予測を引き起こす。
私たちのアプローチは、モデル脆弱性を理解するためのSHAPベースの分析から始まり、ターゲットの回避戦略の考案に不可欠です。
バイナリ探索アルゴリズムを用いた最適エプシロン法は,回避に要する最小エプシロンを効率的に決定する。
論文 参考訳(メタデータ) (2024-04-24T05:22:38Z) - LTRDetector: Exploring Long-Term Relationship for Advanced Persistent Threats Detection [20.360010908574303]
Advanced Persistent Threat (APT) は, 持続時間, 発生頻度, 適応的隠蔽技術により, 検出が困難である。
既存のアプローチは主に、永続的な攻撃ライフサイクルを通じて形成された複雑な関係を無視して、攻撃行動の観測可能な特性に重点を置いている。
LTRDetectorと呼ばれる革新的なAPT検出フレームワークを提案し、エンド・ツー・エンドの全体的操作を実装した。
論文 参考訳(メタデータ) (2024-04-04T02:30:51Z) - Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
本研究では,機械学習技術を用いたマルウェア検出の徹底的な検討を行う。
その目的は、脅威をより効果的に識別し緩和することで、サイバーセキュリティの能力を向上させることである。
論文 参考訳(メタデータ) (2024-03-04T17:22:43Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - Robustness Evaluation of Deep Unsupervised Learning Algorithms for
Intrusion Detection Systems [0.0]
本稿では, 汚染データに対する侵入検出のための6つの最新のディープラーニングアルゴリズムの堅牢性を評価する。
本研究で用いた最先端のアルゴリズムは,データ汚染に敏感であり,データ摂動に対する自己防衛の重要性を明らかにしている。
論文 参考訳(メタデータ) (2022-06-25T02:28:39Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Artificial Text Detection via Examining the Topology of Attention Maps [58.46367297712477]
トポロジカルデータ分析(TDA)に基づく3種類の解釈可能なトポロジカル特徴を提案する。
BERTモデルから派生した特徴が3つの共通データセットにおいて、カウントベースとニューラルベースベースラインを最大10%上回っていることを実証的に示す。
特徴の探索解析は表面に対する感度と構文的性質を明らかにしている。
論文 参考訳(メタデータ) (2021-09-10T12:13:45Z) - Anomaly Detection via Self-organizing Map [52.542991004752]
製品品質管理のための工業生産において,異常検出が重要な役割を担っている。
従来の異常検出方法は、限定的な一般化能力を持つルールベースである。
教師付きディープラーニングに基づく最近の手法は、より強力だが、訓練には大規模な注釈付きデータセットが必要である。
論文 参考訳(メタデータ) (2021-07-21T06:56:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。