論文の概要: HyperCMR: Enhanced Multi-Contrast CMR Reconstruction with Eagle Loss
- arxiv url: http://arxiv.org/abs/2410.03624v1
- Date: Fri, 4 Oct 2024 17:29:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 20:58:02.803649
- Title: HyperCMR: Enhanced Multi-Contrast CMR Reconstruction with Eagle Loss
- Title(参考訳): HyperCMR: イーグルロスを用いたマルチコントラストCMR再建術
- Authors: Ruru Xu, Caner Özer, Ilkay Oksuz,
- Abstract要約: HyperCMRは、心臓磁気共鳴(CMR)画像の再構築を促進するために設計された新しいフレームワークである。
CMRxRecon2024チャレンジデータセットで実施された実験は、HyperCMRがベースラインを一貫して上回ることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accelerating image acquisition for cardiac magnetic resonance imaging (CMRI) is a critical task. CMRxRecon2024 challenge aims to set the state of the art for multi-contrast CMR reconstruction. This paper presents HyperCMR, a novel framework designed to accelerate the reconstruction of multi-contrast cardiac magnetic resonance (CMR) images. HyperCMR enhances the existing PromptMR model by incorporating advanced loss functions, notably the innovative Eagle Loss, which is specifically designed to recover missing high-frequency information in undersampled k-space. Extensive experiments conducted on the CMRxRecon2024 challenge dataset demonstrate that HyperCMR consistently outperforms the baseline across multiple evaluation metrics, achieving superior SSIM and PSNR scores.
- Abstract(参考訳): 心臓磁気共鳴画像(CMRI)の加速画像取得は重要な課題である。
CMRxRecon2024の課題は、マルチコントラストCMR再構築の最先端の設定である。
本稿では,マルチコントラスト心磁気共鳴(CMR)画像の再構成を促進するための新しいフレームワークであるHyperCMRを提案する。
HyperCMR は既存の PromptMR モデルを強化し、特に革新的なイーグルロス (Eagle Loss) を取り入れた。
CMRxRecon2024チャレンジデータセットで実施された大規模な実験は、HyperCMRが複数の評価指標で一貫してベースラインを上回り、優れたSSIMとPSNRスコアを達成していることを示している。
関連論文リスト
- TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling [7.281993256973667]
本研究は,TC-KANReconと命名された,革新的な条件付き拡散モデルを提案する。
Multi-Free U-KAN (MF-UKAN) モジュールと動的クリッピング戦略が組み込まれている。
実験により,提案手法は定性評価と定量的評価の両方において,他のMRI再建法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-11T06:31:56Z) - DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic
Models [11.068359534951783]
DiffCMRは、アンダーサンプルMRI画像スライスからコンディショニング信号を知覚し、対応するフルサンプルMRI画像スライスを生成する。
我々は,MICCAI 2023 Cardiac MRI Restruction Challengeデータセットを用いたDiffCMRとT1/T2マッピングタスクの検証を行った。
その結果,本手法は従来の手法をはるかに上回り,最先端の性能を実現していることがわかった。
論文 参考訳(メタデータ) (2023-12-08T06:11:21Z) - Cine cardiac MRI reconstruction using a convolutional recurrent network
with refinement [9.173298795526152]
心臓MRI再建における時間的相関を利用した畳み込みリカレントニューラルネットワーク(CRNN)アーキテクチャについて検討した。
これは、単一画像の超解像度リファインメントモジュールと組み合わせて、単一コイルの再構築を4.4%、正規化平均二乗誤差3.9%改善する。
提案モデルでは, ベースライン症例と比較して有意に拡張され, 心臓MRI再建のさらなる改善に有望な可能性を秘めている。
論文 参考訳(メタデータ) (2023-09-23T14:07:04Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
本稿では,MRI再構成のためのリカレントトランスモデルである textbfReconFormer を提案する。
高度にアンダーサンプリングされたk空間データから高純度磁気共鳴像を反復的に再構成することができる。
パラメータ効率が向上し,最先端手法よりも大幅に向上したことを示す。
論文 参考訳(メタデータ) (2022-01-23T21:58:19Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
高速MRI再構成のための新しいテクスチャトランスフォーマーモジュール(TTM)を提案する。
変換器のクエリやキーとしてアンダーサンプルのデータと参照データを定式化する。
提案したTTMは、MRIの再構成手法に積み重ねることで、その性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-11-18T03:06:25Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。