Large Language Models Overcome the Machine Penalty When Acting Fairly but Not When Acting Selfishly or Altruistically
- URL: http://arxiv.org/abs/2410.03724v2
- Date: Tue, 8 Oct 2024 09:16:15 GMT
- Title: Large Language Models Overcome the Machine Penalty When Acting Fairly but Not When Acting Selfishly or Altruistically
- Authors: Zhen Wang, Ruiqi Song, Chen Shen, Shiya Yin, Zhao Song, Balaraju Battu, Lei Shi, Danyang Jia, Talal Rahwan, Shuyue Hu,
- Abstract summary: In social dilemmas where the collective and self-interests are at odds, people typically cooperate less with machines than with fellow humans.
In this study, we explore the possibility of closing this research question by using Large Language Models (LLMs)
Our findings reveal that, when interacting with humans, fair LLMs are able to induce cooperation levels comparable to those observed in human-human interactions.
- Score: 14.576971868730709
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In social dilemmas where the collective and self-interests are at odds, people typically cooperate less with machines than with fellow humans, a phenomenon termed the machine penalty. Overcoming this penalty is critical for successful human-machine collectives, yet current solutions often involve ethically-questionable tactics, like concealing machines' non-human nature. In this study, with 1,152 participants, we explore the possibility of closing this research question by using Large Language Models (LLMs), in scenarios where communication is possible between interacting parties. We design three types of LLMs: (i) Cooperative, aiming to assist its human associate; (ii) Selfish, focusing solely on maximizing its self-interest; and (iii) Fair, balancing its own and collective interest, while slightly prioritizing self-interest. Our findings reveal that, when interacting with humans, fair LLMs are able to induce cooperation levels comparable to those observed in human-human interactions, even when their non-human nature is fully disclosed. In contrast, selfish and cooperative LLMs fail to achieve this goal. Post-experiment analysis shows that all three types of LLMs succeed in forming mutual cooperation agreements with humans, yet only fair LLMs, which occasionally break their promises, are capable of instilling a perception among humans that cooperating with them is the social norm, and eliciting positive views on their trustworthiness, mindfulness, intelligence, and communication quality. Our findings suggest that for effective human-machine cooperation, bot manufacturers should avoid designing machines with mere rational decision-making or a sole focus on assisting humans. Instead, they should design machines capable of judiciously balancing their own interest and the interest of humans.
Related papers
- The Dynamics of Social Conventions in LLM populations: Spontaneous Emergence, Collective Biases and Tipping Points [0.0]
We investigate the dynamics of conventions within populations of Large Language Model (LLM) agents using simulated interactions.
We show that globally accepted social conventions can spontaneously arise from local interactions between communicating LLMs.
Minority groups of committed LLMs can drive social change by establishing new social conventions.
arXiv Detail & Related papers (2024-10-11T16:16:38Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
Theory of Mind (ToM) significantly impacts human collaboration and communication as a crucial capability to understand others.
Mutual Theory of Mind (MToM) arises when AI agents with ToM capability collaborate with humans.
We find that the agent's ToM capability does not significantly impact team performance but enhances human understanding of the agent.
arXiv Detail & Related papers (2024-09-13T13:19:48Z) - Confidence-weighted integration of human and machine judgments for superior decision-making [2.4217853168915475]
Recent studies have shown that large language models (LLMs) can surpass humans in certain tasks.
We show that humans, despite performing worse than LLMs, can still add value when teamed with them.
A human and machine team can surpass each individual teammate when team members' confidence is well-calibrated.
arXiv Detail & Related papers (2024-08-15T11:16:21Z) - Are Large Language Models Aligned with People's Social Intuitions for Human-Robot Interactions? [7.308479353736709]
Large language models (LLMs) are increasingly used in robotics, especially for high-level action planning.
In this work, we test whether LLMs reproduce people's intuitions and communication in human-robot interaction scenarios.
We show that vision models fail to capture the essence of video stimuli and that LLMs tend to rate different communicative acts and behavior higher than people.
arXiv Detail & Related papers (2024-03-08T22:23:23Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
This paper probes the collaboration mechanisms among contemporary NLP systems by practical experiments with theoretical insights.
We fabricate four unique societies' comprised of LLM agents, where each agent is characterized by a specific trait' (easy-going or overconfident) and engages in collaboration with a distinct thinking pattern' (debate or reflection)
Our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity and consensus reaching, mirroring social psychology theories.
arXiv Detail & Related papers (2023-10-03T15:05:52Z) - Unleashing the Emergent Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration [116.09561564489799]
Solo Performance Prompting transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas.
A cognitive synergist is an intelligent agent that collaboratively combines multiple minds' strengths and knowledge to enhance problem-solving in complex tasks.
Our in-depth analysis shows that assigning multiple fine-grained personas in LLMs improves problem-solving abilities compared to using a single or fixed number of personas.
arXiv Detail & Related papers (2023-07-11T14:45:19Z) - Investigating the Impact of Direct Punishment on the Emergence of Cooperation in Multi-Agent Reinforcement Learning Systems [2.4555276449137042]
Problems of cooperation are omnipresent within human society.
As the use of AI becomes more pervasive throughout society, the need for socially intelligent agents is becoming increasingly evident.
This paper presents a comprehensive analysis and evaluation of the behaviors and learning dynamics associated with direct punishment, third-party punishment, partner selection, and reputation.
arXiv Detail & Related papers (2023-01-19T19:33:54Z) - Doing Right by Not Doing Wrong in Human-Robot Collaboration [8.078753289996417]
We propose a novel approach to learning fair and sociable behavior, not by reproducing positive behavior, but rather by avoiding negative behavior.
In this study, we highlight the importance of incorporating sociability in robot manipulation, as well as the need to consider fairness in human-robot interactions.
arXiv Detail & Related papers (2022-02-05T23:05:10Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.