論文の概要: Repurposing Foundation Model for Generalizable Medical Time Series Classification
- arxiv url: http://arxiv.org/abs/2410.03794v1
- Date: Thu, 3 Oct 2024 23:50:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-02 16:20:48.018526
- Title: Repurposing Foundation Model for Generalizable Medical Time Series Classification
- Title(参考訳): 汎用医療時系列分類のための再生基盤モデル
- Authors: Nan Huang, Haishuai Wang, Zihuai He, Marinka Zitnik, Xiang Zhang,
- Abstract要約: FORMEDは、事前訓練されたバックボーンを利用する基礎分類モデルである。
チャネルの数、サンプルの長さ、医療タスクに関係なく、見当たらないMedTSデータセットにシームレスに適応できる。
本結果は,多種多様なMedTS分類タスクに対して,多種多様かつスケーラブルなモデルとして構成され,将来のMedTS解析研究の基盤モデルとして位置づけられる。
- 参考スコア(独自算出の注目度): 16.21546283978257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical time series (MedTS) classification is critical for a wide range of healthcare applications such as Alzheimer's Disease diagnosis. However, its real-world deployment is severely challenged by poor generalizability due to inter- and intra-dataset heterogeneity in MedTS, including variations in channel configurations, time series lengths, and diagnostic tasks. Here, we propose FORMED, a foundation classification model that leverages a pre-trained backbone and tackles these challenges through re-purposing. FORMED integrates the general representation learning enabled by the backbone foundation model and the medical domain knowledge gained on a curated cohort of MedTS datasets. FORMED can adapt seamlessly to unseen MedTS datasets, regardless of the number of channels, sample lengths, or medical tasks. Experimental results show that, without any task-specific adaptation, the repurposed FORMED achieves performance that is competitive with, and often superior to, 11 baseline models trained specifically for each dataset. Furthermore, FORMED can effectively adapt to entirely new, unseen datasets, with lightweight parameter updates, consistently outperforming baselines. Our results highlight FORMED as a versatile and scalable model for a wide range of MedTS classification tasks, positioning it as a strong foundation model for future research in MedTS analysis.
- Abstract(参考訳): 医学時系列分類(MedTS)は、アルツハイマー病の診断など幅広い医療応用において重要である。
しかし、実世界の展開は、チャネル構成のバリエーション、時系列の長さ、診断タスクなど、MedTSにおけるデータ間およびデータ間不均一性により、一般化性に欠ける。
本稿では,事前学習したバックボーンを活用する基盤分類モデルであるFORMEDを提案する。
FORMEDは、バックボーン基盤モデルによって実現された汎用的な表現学習と、MedTSデータセットのキュレートされたコホートで得られた医療領域の知識を統合する。
FORMEDは、チャネルの数、サンプルの長さ、医療タスクに関係なく、目に見えないMedTSデータセットにシームレスに適応することができる。
実験の結果、タスク固有の適応がなければ、再利用されたFORMEDは、各データセットに特化して訓練された11のベースラインモデルと競合し、しばしば優れているパフォーマンスを達成する。
さらに、FORMEDは、完全に新しい、目に見えないデータセットに効果的に適応でき、軽量なパラメータ更新により、ベースラインを一貫して上回る。
本結果は,多種多様なMedTS分類タスクに対して,多種多様かつスケーラブルなモデルとして構成され,将来のMedTS解析研究の基盤モデルとして位置づけられる。
関連論文リスト
- QoQ-Med: Building Multimodal Clinical Foundation Models with Domain-Aware GRPO Training [27.457139119626884]
QoQ-Medは、医療画像、時系列信号、およびテキストレポートを共同で原因付ける、最初のオープン・ジェネラリスト臨床基礎モデルである。
DRPOトレーニングは,すべての視覚領域において,マクロF1の診断性能を平均43%向上させることを示した。
QoQ-Medは集中的なセグメンテーションデータに基づいてトレーニングされており、オープンモデルよりもIoU 10倍高い、診断に関連する健全な領域をハイライトすることができる。
論文 参考訳(メタデータ) (2025-05-31T21:02:52Z) - Med-LEGO: Editing and Adapting toward Generalist Medical Image Diagnosis [17.10843389390131]
Med-LEGOは、ジェネラリストCADモデルのシームレスな統合や更新を可能にする、トレーニング不要のフレームワークである。
我々の実験では、Med-LEGOは、クロスドメインとインドメインの両方の医療タスクにおいて、既存の手法よりも優れています。
論文 参考訳(メタデータ) (2025-03-03T04:27:11Z) - Rethinking Foundation Models for Medical Image Classification through a Benchmark Study on MedMNIST [7.017817009055001]
医用画像分類タスクにおける基礎モデルの有用性について,MedMNISTデータセットのベンチマークによる検討を行った。
我々は畳み込みモデルからトランスフォーマーモデルまで様々な基礎モデルを採用し、すべての分類タスクに対してエンドツーエンドのトレーニングと線形探索の両方を実装している。
論文 参考訳(メタデータ) (2025-01-24T18:01:07Z) - ICH-SCNet: Intracerebral Hemorrhage Segmentation and Prognosis Classification Network Using CLIP-guided SAM mechanism [12.469269425813607]
脳内出血 (ICH) は脳卒中で最も致命的なサブタイプであり, 障害の発生頻度が高いことが特徴である。
既存のアプローチでは、これらの2つのタスクを独立して処理し、主にデータのみにフォーカスする。
本稿では,ICHセグメンテーションと予後分類の両方のために設計されたマルチタスクネットワークICH-SCNetを提案する。
論文 参考訳(メタデータ) (2024-11-07T12:34:25Z) - KA$^2$ER: Knowledge Adaptive Amalgamation of ExpeRts for Medical Images Segmentation [5.807887214293438]
本稿では,多元的基礎モデルを学習し,複数のエキスパートモデルの協調的な目標に対処することを目的としたアダプティブ・アマルガメーション・ナレッジ・フレームワークを提案する。
特に、まず、各タスクに対してnnUNetベースのエキスパートモデルをトレーニングし、トレーニング済みのSwinUNTERをターゲット基盤モデルとして再利用する。
隠蔽層内の階層的アテンション機構は、すべての専門家の隠蔽層の特徴知識にターゲットモデルの適応的なマージを実現するように設計されている。
論文 参考訳(メタデータ) (2024-10-28T14:49:17Z) - Toward Generalizable Multiple Sclerosis Lesion Segmentation Models [0.0]
本研究の目的は,多様な評価データセットにまたがる一般化モデルを開発することである。
私たちは、最先端のUNet++アーキテクチャを体系的にトレーニングした、高品質で公開可能なすべてのMS病変セグメンテーションデータセットを使用しました。
論文 参考訳(メタデータ) (2024-10-25T15:21:54Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
知識分解」は、特定の医療課題のパフォーマンス向上を目的としている。
我々はLow-Rank Knowledge Decomposition(LoRKD)という新しいフレームワークを提案する。
LoRKDは、低ランクのエキスパートモジュールと効率的な知識分離畳み込みを組み込むことで、グラデーションを異なるタスクから明確に分離する。
論文 参考訳(メタデータ) (2024-09-29T03:56:21Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
MedS-Benchは大規模言語モデル(LLM)の性能を臨床的に評価するためのベンチマークである。
MedS-Benchは、臨床報告の要約、治療勧告、診断、名前付きエンティティ認識、医療概念説明を含む、11のハイレベルな臨床タスクにまたがる。
MedS-Insは58の医療指向言語コーパスで構成され、112のタスクで1350万のサンプルを収集している。
論文 参考訳(メタデータ) (2024-08-22T17:01:34Z) - SAM-Med3D-MoE: Towards a Non-Forgetting Segment Anything Model via Mixture of Experts for 3D Medical Image Segmentation [36.95030121663565]
Supervised Finetuning (SFT) は、タスク固有の下流タスクに基礎モデルを適用する効果的な方法として機能する。
本稿では,タスク固有の微調整モデルと基礎モデルとをシームレスに統合する新しいフレームワークSAM-Med3D-MoEを提案する。
実験では, SAM-Med3D-MoEの有効性を実証し, 平均Dice性能は15種類のクラスで53から56.4に向上した。
論文 参考訳(メタデータ) (2024-07-06T03:03:45Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling [22.94521527609479]
EMERGEは、マルチモーダルEHR予測モデリングの強化を目的とした、検索拡張生成駆動フレームワークである。
提案手法は,大規模言語モデルにより時系列データと臨床メモの両方からエンティティを抽出する。
抽出した知識は、患者の健康状態のタスク関連サマリーを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-27T10:53:15Z) - Unified Multi-modal Diagnostic Framework with Reconstruction Pre-training and Heterogeneity-combat Tuning [14.556686415877602]
本稿では,事前トレーニングと下流チューニングを調整した統一医療マルチモーダル診断(UMD)フレームワークを提案する。
具体的には,多段階再構成事前訓練(MR-Pretraining)戦略を提案する。
特に、TD-Calibは、下流データセットの分布に関する事前訓練されたモデルを微調整し、GM-Coordは、異なるモードの動的最適化状況に応じて勾配重みを調整する。
論文 参考訳(メタデータ) (2024-04-09T06:47:44Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - DGM-DR: Domain Generalization with Mutual Information Regularized
Diabetic Retinopathy Classification [40.35834579068518]
トレーニングとテストデータのドメインシフトは、一般的なディープラーニングモデルをトレーニングする上で大きな課題となる。
医用画像領域に事前訓練されたモデルとしてモデル目的関数を再確立するDG法を提案する。
提案手法は,従来の最先端技術よりも平均精度5.25%,標準偏差が低い。
論文 参考訳(メタデータ) (2023-09-18T11:17:13Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
ファンデーションモデルは、多くの場合、大規模なデータで事前訓練されているが、様々なビジョンや言語アプリケーションのジャンプ開始において、最も成功している。
最近の進歩により、下流タスクにおける基礎モデルの適応は、少数のトレーニングサンプルだけで効率的に行えるようになった。
しかし, 医用画像解析におけるそのような学習パラダイムの適用は, 一般に公開されているデータやベンチマークが不足しているため, 依然として少ない。
論文 参考訳(メタデータ) (2023-06-16T01:46:07Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Architecture, Dataset and Model-Scale Agnostic Data-free Meta-Learning [117.48444197402858]
データフリーメタトレーニングにおけるePisode cUrriculum inversion(ECI)と、内部ループ後のinvErsion calibRation(ICFIL)を提案する。
ECIは、メタモデルのリアルタイムフィードバックに応じて、擬似エピソードの難易度を適応的に増加させる。
本稿では,ECIを用いたメタトレーニングの最適化過程を,エンド・ツー・エンド方式で近似形式として定式化する。
論文 参考訳(メタデータ) (2023-03-20T15:10:41Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
本稿では,コンピテンスベースのマルチモーダルカリキュラム学習フレームワーク(CMCL)を提案する。
具体的には、CMCLは放射線学者の学習過程をシミュレートし、段階的にモデルを最適化する。
パブリックIU-XrayとMIMIC-CXRデータセットの実験は、CMCLを既存のモデルに組み込んでパフォーマンスを向上させることができることを示している。
論文 参考訳(メタデータ) (2022-06-24T08:16:01Z) - Incremental Learning Meets Transfer Learning: Application to Multi-site
Prostate MRI Segmentation [16.50535949349874]
インクリメンタルトランスファー学習(ITL)と呼ばれる新しいマルチサイトセグメンテーションフレームワークを提案する。
ITLは、エンドツーエンドのシーケンシャルな方法で、マルチサイトデータセットからモデルを学習する。
ITLトレーニングスキームを活用することで、漸進的な学習における破滅的な問題を軽減できることを示す。
論文 参考訳(メタデータ) (2022-06-03T02:32:01Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Improving Generalization in Meta-learning via Task Augmentation [69.83677015207527]
本稿ではMetaMixとChannel Shuffleの2つのタスク拡張手法を提案する。
MetaMixとChannel Shuffleはどちらも、多くのデータセットにまたがる大きなマージンによって、最先端の結果を上回っている。
論文 参考訳(メタデータ) (2020-07-26T01:50:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。