論文の概要: Mesh-Informed Reduced Order Models for Aneurysm Rupture Risk Prediction
- arxiv url: http://arxiv.org/abs/2410.03802v1
- Date: Fri, 4 Oct 2024 09:39:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 16:10:45.622136
- Title: Mesh-Informed Reduced Order Models for Aneurysm Rupture Risk Prediction
- Title(参考訳): 大動脈瘤破裂リスク予測のためのメッシュインフォームドリダクションモデル
- Authors: Giuseppe Alessio D'Inverno, Saeid Moradizadeh, Sajad Salavatidezfouli, Pasquale Claudio Africa, Gianluigi Rozza,
- Abstract要約: グラフニューラルネットワーク(GNN)は、有限体積(FV)離散化によって得られるメッシュの自然なグラフ構造を利用する。
実験的な検証フレームワークは有望な結果をもたらし,その方法が次元の呪いを克服する有効な代替手段であることを確認した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The complexity of the cardiovascular system needs to be accurately reproduced in order to promptly acknowledge health conditions; to this aim, advanced multifidelity and multiphysics numerical models are crucial. On one side, Full Order Models (FOMs) deliver accurate hemodynamic assessments, but their high computational demands hinder their real-time clinical application. In contrast, ROMs provide more efficient yet accurate solutions, essential for personalized healthcare and timely clinical decision-making. In this work, we explore the application of computational fluid dynamics (CFD) in cardiovascular medicine by integrating FOMs with ROMs for predicting the risk of aortic aneurysm growth and rupture. Wall Shear Stress (WSS) and the Oscillatory Shear Index (OSI), sampled at different growth stages of the abdominal aortic aneurysm, are predicted by means of Graph Neural Networks (GNNs). GNNs exploit the natural graph structure of the mesh obtained by the Finite Volume (FV) discretization, taking into account the spatial local information, regardless of the dimension of the input graph. Our experimental validation framework yields promising results, confirming our method as a valid alternative that overcomes the curse of dimensionality.
- Abstract(参考訳): 心臓血管系の複雑さは、健康状態を迅速に認識するために正確に再現する必要がある。
一方、フルオーダーモデル(FOM)は正確な血行動態の評価を行うが、その高い計算要求はリアルタイム臨床応用を妨げる。
対照的に、ROMはより効率的で正確なソリューションを提供しており、パーソナライズされたヘルスケアとタイムリーな臨床的意思決定に不可欠である。
本研究では,大動脈瘤の進展と破裂のリスクを予測するために,FOMとROMを統合することにより,心血管医学における計算流体力学(CFD)の適用について検討する。
腹部大動脈瘤の異なる成長段階で採取された壁せん断応力 (WSS) とOscillatory Shear Index (OSI) をグラフニューラルネットワーク (GNN) を用いて予測する。
GNNは、入力グラフの寸法に関係なく、空間的局所情報を考慮した有限体積(FV)離散化によって得られるメッシュの自然なグラフ構造を利用する。
実験的な検証フレームワークは有望な結果をもたらし,その方法が次元の呪いを克服する有効な代替手段であることを確認した。
関連論文リスト
- Deep vectorised operators for pulsatile hemodynamics estimation in coronary arteries from a steady-state prior [2.3971720731010766]
本稿では,拍動血行動態を推定するために,機械学習を利用した時間効率な代理モデルを提案する。
本モデルでは, 震源領域の再サンプリングに依存せず, 脈動速度と圧力の正確な推定値が得られた。
論文 参考訳(メタデータ) (2024-10-15T12:24:50Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
左室容積推定は各種心血管疾患の診断・管理に重要である。
近年の機械学習、特にU-Netのような畳み込みネットワークは、医療画像の自動セグメンテーションを促進している。
本研究では,LV容積予測におけるポストホック不確実性推定のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T13:44:55Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
シミュレーションに基づく推論を用いて、波形をプラプシブルな生理的パラメータにマッピングする逆問題を解決する。
臨床応用5種類のバイオマーカーのin-silico不確実性解析を行った。
我々はMIMIC-III波形データベースを用いて,ビビオとシリカのギャップについて検討した。
論文 参考訳(メタデータ) (2023-07-26T02:34:57Z) - Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation on the Artery Wall [13.113110989699571]
三次元幾何学的動脈モデルによる壁面上のベクトル値量の推定について検討する。
我々は、三角形のメッシュ上で直接動作するエンドツーエンドSE(3)-同変ニューラルネットワークにおいて、グループ同変グラフ畳み込みを用いる。
本手法は, 経時的, ベクトル値のWSSを, 異なる流れ境界条件下で正確に予測できるほど強力であることを示す。
論文 参考訳(メタデータ) (2022-12-09T18:16:06Z) - Geometric Deep Learning for the Assessment of Thrombosis Risk in the
Left Atrial Appendage [0.7956218230251954]
本研究では,患者固有のLAA形状から,血栓症のリスクに関連する内皮細胞活性化電位(ECAP)を予測できるフレームワークを開発する。
このモデルは202個の合成LAAと54個の実LAAを組み合わせたデータセットを用いて訓練され、EPP分布を瞬時に予測し、平均絶対誤差は0.563である。
論文 参考訳(メタデータ) (2022-10-19T14:03:54Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Continuous Forecasting via Neural Eigen Decomposition of Stochastic
Dynamics [47.82509795873254]
本稿では,スパース観測と適応力学を用いた逐次予測のためのニューラル固有SDEアルゴリズムを提案する。
NESDEは、スパース観測による効率的な頻繁な予測を可能にするために、力学モデルに固有分解を適用する。
我々は,MIMIC-IVデータセットにおけるヘパリン投与後の血液凝固の患者適応予測を初めて行った。
論文 参考訳(メタデータ) (2022-01-31T22:16:50Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
本研究では, 心筋灌流MR定量化のための物理インフォームドニューラルネットワーク(PINN)を提案する。
PINNは、基礎となる物理保存法則を尊重しながら、観測された拡散MRデータに適合するように訓練することができる。
論文 参考訳(メタデータ) (2020-11-25T16:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。