論文の概要: Unsupervised Assessment of Landscape Shifts Based on Persistent Entropy and Topological Preservation
- arxiv url: http://arxiv.org/abs/2410.04183v1
- Date: Tue, 22 Oct 2024 07:24:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 13:41:32.279045
- Title: Unsupervised Assessment of Landscape Shifts Based on Persistent Entropy and Topological Preservation
- Title(参考訳): 持続エントロピーとトポロジカル保存に基づく景観変化の教師なし評価
- Authors: Sebastian Basterrech,
- Abstract要約: 入力データのドリフトは、学習予測器とシステムの安定性に負の結果をもたらす可能性がある。
本稿では,多次元データストリームの変化をモニタリングする新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Concept drift typically refers to the analysis of changes in data distribution. A drift in the input data can have negative consequences on a learning predictor and the system's stability. The majority of concept drift methods emphasize the analysis of statistical changes in non-stationary data over time. In this context, we consider another perspective, where the concept drift also integrates substantial changes in the topological characteristics of the data stream. In this article, we introduce a novel framework for monitoring changes in multi-dimensional data streams. We explore a generalization of the standard concept drift focusing on the changes in the topological characteristics of the data. Our developed approach is based on persistent entropy and topology-preserving projections in a continual learning scenario. The framework operates in both unsupervised and supervised environments. To demonstrate the utility of the proposed framework, we analyze the model across three scenarios using data streams generated with MNIST samples. The obtained results reveal the potential of applying topological data analysis for shift detection and encourage further research in this area.
- Abstract(参考訳): 概念ドリフトは典型的にはデータ分布の変化の分析を指す。
入力データのドリフトは、学習予測器とシステムの安定性に負の結果をもたらす可能性がある。
概念ドリフト法の大半は、時間とともに非定常データの統計的変化を分析することを強調する。
この文脈では、ドリフトの概念がデータストリームのトポロジ的特性に大きな変化をもたらすという見方も考えられている。
本稿では,多次元データストリームの変化をモニタリングする新しいフレームワークを提案する。
本稿では,データのトポロジ的特性の変化に着目した標準概念ドリフトの一般化について検討する。
提案手法は連続学習シナリオにおける持続エントロピーとトポロジ保存プロジェクションに基づく。
このフレームワークは、教師なし環境と教師なし環境の両方で動作する。
提案フレームワークの有用性を実証するために,MNISTサンプルを用いて生成されたデータストリームを用いて3つのシナリオでモデルを解析する。
その結果, シフト検出にトポロジカルデータ解析を適用する可能性を明らかにし, この分野のさらなる研究を奨励した。
関連論文リスト
- You are out of context! [0.0]
新しいデータは、モデルによって学習された幾何学的関係を伸ばしたり、圧縮したり、ねじったりする力として振る舞うことができる。
本稿では,ベクトル空間表現における「変形」の概念に基づく機械学習モデルのための新しいドリフト検出手法を提案する。
論文 参考訳(メタデータ) (2024-11-04T10:17:43Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - AdaOcc: Adaptive Forward View Transformation and Flow Modeling for 3D Occupancy and Flow Prediction [56.72301849123049]
CVPR 2024 における nuScenes Open-Occ データセットチャレンジにおいて,視覚中心の3次元活動とフロー予測トラックのソリューションを提案する。
我々の革新的なアプローチは、適応的なフォワード・ビュー・トランスフォーメーションとフロー・モデリングを取り入れることで、3次元の占有率とフロー予測を向上させる2段階のフレームワークである。
提案手法は回帰と分類を組み合わせることで,様々な場面におけるスケールの変動に対処し,予測フローを利用して将来のフレームに現行のボクセル特徴をワープする。
論文 参考訳(メタデータ) (2024-07-01T16:32:15Z) - Motion-Scenario Decoupling for Rat-Aware Video Position Prediction:
Strategy and Benchmark [49.58762201363483]
本研究では,個人や環境の影響要因を考慮し,生物ロボットの動き予測データセットであるRatPoseを紹介する。
本稿では,シナリオ指向とモーション指向を効果的に分離するDual-stream Motion-Scenario Decouplingフレームワークを提案する。
難易度が異なるタスクに対して,提案したtextitDMSD フレームワークの大幅な性能向上を示す。
論文 参考訳(メタデータ) (2023-05-17T14:14:31Z) - Tracking changes using Kullback-Leibler divergence for the continual
learning [2.0305676256390934]
本稿では,多次元データストリームの確率分布の変化をモニタリングする新しい手法を提案する。
変化の速さの尺度として、人気のあるKulback-Leiblerの発散を分析する。
我々は,この指標を用いて,概念の漂流の発生を予測し,その性質を理解する方法を示す。
論文 参考訳(メタデータ) (2022-10-10T17:30:41Z) - Temporal Domain Generalization with Drift-Aware Dynamic Neural Network [12.483886657900525]
ドリフト対応動的ニューラルネットワーク(DRAIN)フレームワークを用いた時間領域一般化を提案する。
具体的には、この問題を、データとモデル力学の関係を共同でモデル化するベイズ的枠組みに定式化する。
モデルパラメータとデータ分布の時間的ドリフトをキャプチャし、将来のデータなしで将来モデルを予測することができる。
論文 参考訳(メタデータ) (2022-05-21T20:01:31Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - OR-Net: Pointwise Relational Inference for Data Completion under Partial
Observation [51.083573770706636]
この作業はリレーショナル推論を使って不完全なデータを埋めます。
本稿では,2つの点での相対性理論をモデル化するために,全関係ネットワーク (or-net) を提案する。
論文 参考訳(メタデータ) (2021-05-02T06:05:54Z) - Drift Estimation with Graphical Models [0.0]
グラフィカルモデルを用いて、データの可視構造を抽出し、隠れたコンテキストの変化から推測する。
本研究は,オーストラリア電力市場における実世界データを用いた評価手法である。
論文 参考訳(メタデータ) (2021-02-02T12:24:34Z) - Diagnosing Concept Drift with Visual Analytics [27.836419202828303]
概念ドリフトは、データストリームの分布が予期せぬ方法で時間とともに変化し、予測モデルが不正確なものになる現象である。
本稿では,ストリーミングデータにおける概念ドリフトの同定と補正において,モデル構築者やアナリストを支援する視覚解析手法DriftVisを提案する。
論文 参考訳(メタデータ) (2020-07-28T17:29:43Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
現代の深層畳み込みネットワーク(CNN)は、分散シフトの下で一般化しないとしてしばしば批判される。
現代画像分類CNNにおける分布外と転送性能の相互作用を初めて検討した。
トレーニングセットとモデルサイズを増大させることで、分散シフトロバスト性が著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-16T18:39:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。