論文の概要: Persona Knowledge-Aligned Prompt Tuning Method for Online Debate
- arxiv url: http://arxiv.org/abs/2410.04239v1
- Date: Sat, 5 Oct 2024 17:33:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 08:59:37.507810
- Title: Persona Knowledge-Aligned Prompt Tuning Method for Online Debate
- Title(参考訳): オンライン討論のためのペルソナ知識を考慮したプロンプトチューニング手法
- Authors: Chunkit Chan, Cheng Jiayang, Xin Liu, Yauwai Yim, Yuxin Jiang, Zheye Deng, Haoran Li, Yangqiu Song, Ginny Y. Wong, Simon See,
- Abstract要約: 聴衆側から,議論品質評価タスクのためのペルソナ・ナレッジ・アライメント・フレームワークを提案する。
これはChatGPTの出現を利用して、聴衆のペルソナ知識をプロンプトチューニングを通じて小さな言語モデルに注入する最初の作品である。
- 参考スコア(独自算出の注目度): 42.28019112668135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Debate is the process of exchanging viewpoints or convincing others on a particular issue. Recent research has provided empirical evidence that the persuasiveness of an argument is determined not only by language usage but also by communicator characteristics. Researchers have paid much attention to aspects of languages, such as linguistic features and discourse structures, but combining argument persuasiveness and impact with the social personae of the audience has not been explored due to the difficulty and complexity. We have observed the impressive simulation and personification capability of ChatGPT, indicating a giant pre-trained language model may function as an individual to provide personae and exert unique influences based on diverse background knowledge. Therefore, we propose a persona knowledge-aligned framework for argument quality assessment tasks from the audience side. This is the first work that leverages the emergence of ChatGPT and injects such audience personae knowledge into smaller language models via prompt tuning. The performance of our pipeline demonstrates significant and consistent improvement compared to competitive architectures.
- Abstract(参考訳): 議論とは、視点を交換したり、特定の問題について他人を説得するプロセスである。
近年の研究では、議論の説得力は言語の使用だけでなく、コミュニケーション者の特徴によっても決定されるという実証的な証拠が提示されている。
研究者は言語的特徴や談話構造といった言語的側面に多くの注意を払ってきたが、議論の説得性と聴衆の社会的ペルソナへの影響は、難易度と複雑さのために研究されていない。
我々はChatGPTの印象的なシミュレーションと人格化能力を観察し、様々な背景知識に基づいて人格を提供する巨大な事前学習言語モデルが個人として機能し、独特な影響力を発揮できることを示した。
そこで我々は,議論品質評価タスクのためのペルソナ・ナレッジ・アライメント・フレームワークを聴衆側から提案する。
これはChatGPTの出現を利用した最初の作品であり、このような聴衆のペルソナ知識をプロンプトチューニングを通じてより小さな言語モデルに注入する。
パイプラインのパフォーマンスは、競合するアーキテクチャと比較して大きく、一貫した改善を示しています。
関連論文リスト
- Is ChatGPT a Good Personality Recognizer? A Preliminary Study [19.278538849802025]
本研究では,ChatGPTが与えられたテキストから人格を認識する能力について検討する。
我々は、ChatGPTが与えられたテキストから人格を認識する能力を調べるために、様々なプロンプト戦略を採用している。
論文 参考訳(メタデータ) (2023-07-08T11:02:02Z) - ChatGPT vs Human-authored Text: Insights into Controllable Text
Summarization and Sentence Style Transfer [8.64514166615844]
2つの制御可能な生成タスクにおいてChatGPTの性能を体系的に検査する。
生成したテキストの忠実度を評価し、そのモデルの性能を人間によるテキストと比較する。
テキストを特定のスタイルに適合させる際に、ChatGPTは時に事実的誤りや幻覚を取り入れている。
論文 参考訳(メタデータ) (2023-06-13T14:21:35Z) - Uncovering the Potential of ChatGPT for Discourse Analysis in Dialogue:
An Empirical Study [51.079100495163736]
本稿では、トピックセグメンテーションと談話解析という2つの談話分析タスクにおけるChatGPTの性能を体系的に検証する。
ChatGPTは、一般的なドメイン間会話においてトピック構造を特定する能力を示すが、特定のドメイン間会話ではかなり困難である。
我々のより深い調査は、ChatGPTは人間のアノテーションよりも合理的なトピック構造を提供するが、階層的なレトリック構造を線形に解析することしかできないことを示唆している。
論文 参考訳(メタデータ) (2023-05-15T07:14:41Z) - Persua: A Visual Interactive System to Enhance the Persuasiveness of
Arguments in Online Discussion [52.49981085431061]
説得力のある議論を書く能力を高めることは、オンラインコミュニケーションの有効性と文明性に寄与する。
オンライン議論における議論の説得力向上を支援するツールの設計目標を4つ導き出した。
Persuaは対話型ビジュアルシステムであり、議論の説得力を高めるための説得戦略の例に基づくガイダンスを提供する。
論文 参考訳(メタデータ) (2022-04-16T08:07:53Z) - Towards Understanding Persuasion in Computational Argumentation [10.089382889894246]
議論における意見形成と説得は、議論そのもの、議論の源、聴衆の特性の3つの主要な要因によって影響を受ける。
この論文は、計算的説得におけるソース、オーディエンス、言語の影響を相対的に理解するためにいくつかの貢献をしている。
論文 参考訳(メタデータ) (2021-10-03T19:36:21Z) - Who Responded to Whom: The Joint Effects of Latent Topics and Discourse
in Conversation Structure [53.77234444565652]
会話談話における応答関係を同定し,会話の開始に応答発話をリンクする。
単語分布における潜在トピックと会話を学習し,ペアワイズ開始応答リンクを予測するモデルを提案する。
英語と中国語の会話における実験結果から,我々のモデルは過去の芸術の状況を大きく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T17:46:00Z) - Exploring the Role of Argument Structure in Online Debate Persuasion [39.74040217761505]
オンライン討論会における議論における議論の談話構造の役割について考察する。
我々は、より優れた予測性能を達成する上で、引数構造が重要な役割を担っていることを発見した。
論文 参考訳(メタデータ) (2020-10-07T17:34:50Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z) - What Changed Your Mind: The Roles of Dynamic Topics and Discourse in
Argumentation Process [78.4766663287415]
本稿では,議論の説得力において重要な要因を自動的に分析する研究について述べる。
議論的会話における潜在トピックや談話の変化を追跡できる新しいニューラルモデルを提案する。
論文 参考訳(メタデータ) (2020-02-10T04:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。