Role of intermediate resonances in attosecond photoelectron interferometry in neon
- URL: http://arxiv.org/abs/2410.04240v1
- Date: Sat, 5 Oct 2024 17:35:06 GMT
- Title: Role of intermediate resonances in attosecond photoelectron interferometry in neon
- Authors: M. Moioli, M. M. Popova, K. R. Hamilton, D. Ertel, D. Busto, I. Makos, M. D. Kiselev, S. N. Yudin, H. Ahmadi, C. D. Schröter, T. Pfeifer, R. Moshammer, E. V. Gryzlova, A. N. Grum-Grzhimailo, K. Bartschat, G. Sansone,
- Abstract summary: Attosecond photoelectron interferometry is based on the combination of an attosecond pulse train and a synchronized infrared field.
In this work, using a comb of harmonics below and above the ionization threshold of neon, we investigate the effect of intermediate bound excited states on attosecond photoelectron interferometry.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attosecond photoelectron interferometry based on the combination of an attosecond pulse train and a synchronized infrared field is a fundamental technique for the temporal characterization of attosecond waveforms and for the investigation of electron dynamics in the photoionization process. In this approach, the comb of extreme ultraviolet harmonics typically lies above the ionization threshold of the target under investigation, thus releasing a photoelectron by single-photon absorption. The interaction of the outgoing photoelectron with the infrared pulse results in the absorption or emission of infrared photons, thereby creating additional peaks in the photoelectron spectrum, referred to as sidebands. While, in the absence of resonances in the first ionization step, the phases imparted on the photoionization process evolve smoothly with the photon energy, the presence of intermediate resonances imprints a large additional phase on the outgoing photoelectron wave packet. In this work, using a comb of harmonics below and above the ionization threshold of neon, we investigate the effect of intermediate bound excited states on attosecond photoelectron interferometry. We show that the phase of the oscillations of the sidebands and their angular distributions are strongly affected by such resonances. By slightly tuning the photon energies of the extreme ultraviolet harmonics, we show how the contributions of selected resonances can be enhanced or suppressed.
Related papers
- Attosecond spectroscopy using vacuum-ultraviolet pulses emitted from laser-driven semiconductors [0.03269212833895299]
We photoionize Cesium atoms with the vacuum-ultraviolet (VUV) high-harmonics in the presence of a mid-infrared laser field.
We observe strong oscillations of the photoelectron yield originating from the instantaneous polarization of the atoms by the laser field.
This light source opens a new spectral window for attosecond spectroscopy.
arXiv Detail & Related papers (2024-05-28T08:26:07Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Two-photon pulse scattering spectroscopy for arrays of two-level atoms,
coupled to the waveguide [125.99533416395765]
We have theoretically studied the scattering of two-photon pulses from a spatially-separated array of two-level atoms coupled to a waveguide.
The contributions of various single-eigenstate and double-excited eigenstates of the array have been analyzed.
arXiv Detail & Related papers (2023-02-27T22:05:07Z) - Resonant Parametric Photon Generation in Waveguide-coupled Quantum Emitter Arrays [83.88591755871734]
We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum emitters with temporally modulated resonance frequencies.
Such generation can be interpreted as a dynamical Casimir effect.
We demonstrate numerically and analytically how the emission directionality and photon-photon correlations can be controlled by the phases of the modulation.
arXiv Detail & Related papers (2023-02-24T18:07:49Z) - Emergent Quasiperiodicity from Polariton-phonon Hybrid Excitations in
Waveguide Quantum Optomechanics [2.798030314600194]
We investigate polariton-phonon hybrid excitations, which describe the collective excitations of emitter-photon polaritons and vibrational phonons.
We demonstrate the emergence of an interaction-induced quasiperiodic structure caused by the interplay between phonon scatterings and waveguide-mediated long-range couplings.
arXiv Detail & Related papers (2022-07-18T12:15:08Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Determination of atomic multiphoton ionization phases by trichromatic
multichannel wave packet interferometry [0.0]
technique based on trichromatic pulse shaping for unambiguous determination of quantum phases in MPI of potassium atoms.
We show that ionization via a non-resonant intermediate state lifts the degeneracy of photoelectron interferograms from pathways consisting of permutations of the colors.
arXiv Detail & Related papers (2022-03-01T09:56:22Z) - Lifetime-resolved Photon-Correlation Fourier Spectroscopy [0.0]
Simultaneous measurement of the associated spectral dynamics requires a technique with a high spectral and temporal resolution.
We propose a pulsed excitation-laser analog of Photon-Correlation Fourier Spectroscopy (PCFS), which extracts the lineshape and spectral diffusion dynamics along the emission lifetime trajectory of the emitter.
arXiv Detail & Related papers (2021-02-07T03:24:53Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Unraveling two-photon entanglement via the squeezing spectrum of light
traveling through nanofiber-coupled atoms [0.0]
We observe a weak guided light field transmitted through an ensemble of atoms and an optical nanofiber.
From the measured squeezing spectrum we gain access to the phase and amplitude of the energy-time entangled part of the two-photon wavefunction.
Our characterization of the entangled two-photon component constitutes a diagnostic tool for quantum optics devices.
arXiv Detail & Related papers (2020-10-19T12:57:50Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.