Unraveling the Nuances of AI Accountability: A Synthesis of Dimensions Across Disciplines
- URL: http://arxiv.org/abs/2410.04247v2
- Date: Thu, 17 Oct 2024 12:22:11 GMT
- Title: Unraveling the Nuances of AI Accountability: A Synthesis of Dimensions Across Disciplines
- Authors: L. H. Nguyen, S. Lins, M. Renner, A. Sunyaev,
- Abstract summary: We review current research across multiple disciplines and identify key dimensions of accountability in the context of AI.
We reveal six themes with 13 corresponding dimensions and additional accountability facilitators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread diffusion of Artificial Intelligence (AI)-based systems offers many opportunities to contribute to the well-being of individuals and the advancement of economies and societies. This diffusion is, however, closely accompanied by public scandals causing harm to individuals, markets, or society, and leading to the increasing importance of accountability. AI accountability itself faces conceptual ambiguity, with research scattered across multiple disciplines. To address these issues, we review current research across multiple disciplines and identify key dimensions of accountability in the context of AI. We reveal six themes with 13 corresponding dimensions and additional accountability facilitators that future research can utilize to specify accountability scenarios in the context of AI-based systems.
Related papers
- Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
This paper presents a causal framework using Structural Causal Models (SCMs) to systematically attribute responsibility in human-AI systems.
Two case studies illustrate the framework's adaptability in diverse human-AI collaboration scenarios.
arXiv Detail & Related papers (2024-11-05T17:17:45Z) - Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems [2.444630714797783]
We review and discuss the intricacies of AI biases, definitions, methods of detection and mitigation, and metrics for evaluating bias.
We also discuss open challenges with regard to the trustworthiness and widespread application of AI across diverse domains of human-centric decision making.
arXiv Detail & Related papers (2024-08-28T06:04:25Z) - The Narrow Depth and Breadth of Corporate Responsible AI Research [3.364518262921329]
We show that the majority of AI firms show limited or no engagement in this critical subfield of AI.
Leading AI firms exhibit significantly lower output in responsible AI research compared to their conventional AI research.
Our results highlight the urgent need for industry to publicly engage in responsible AI research.
arXiv Detail & Related papers (2024-05-20T17:26:43Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - A Systematic Literature Review of Human-Centered, Ethical, and
Responsible AI [12.456385305888341]
We review and analyze 164 research papers from leading conferences in ethical, social, and human factors of AI.
We find that the current emphasis on governance and fairness in AI research may not adequately address the potential unforeseen and unknown implications of AI.
arXiv Detail & Related papers (2023-02-10T14:47:33Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Descriptive AI Ethics: Collecting and Understanding the Public Opinion [10.26464021472619]
This work proposes a mixed AI ethics model that allows normative and descriptive research to complement each other.
We discuss its implications on bridging the gap between optimistic and pessimistic views towards AI systems' deployment.
arXiv Detail & Related papers (2021-01-15T03:46:27Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.