論文の概要: DiffSpec: Differential Testing with LLMs using Natural Language Specifications and Code Artifacts
- arxiv url: http://arxiv.org/abs/2410.04249v1
- Date: Wed, 23 Oct 2024 09:46:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 08:59:37.484236
- Title: DiffSpec: Differential Testing with LLMs using Natural Language Specifications and Code Artifacts
- Title(参考訳): DiffSpec: 自然言語仕様とコードアーチファクトを使用したLLMによる微分テスト
- Authors: Nikitha Rao, Elizabeth Gilbert, Tahina Ramananandro, Nikhil Swamy, Claire Le Goues, Sarah Fakhoury,
- Abstract要約: 大規模な言語モデルで差分テストを生成するためのフレームワークであるDiffSpecを紹介する。
本稿では,2つの異なるシステム,すなわちeBPFランタイムとWasmバリデータに対するDiffSpecの有効性を示す。
- 参考スコア(独自算出の注目度): 6.222103009114668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential testing can be an effective way to find bugs in software systems with multiple implementations that conform to the same specification, like compilers, network protocol parsers, and language runtimes. Specifications for such systems are often standardized in natural language documents, like Instruction Set Architecture (ISA) specifications, Wasm specifications or IETF RFC's. Large Language Models (LLMs) have demonstrated potential in both generating tests and handling large volumes of natural language text, making them well-suited for utilizing artifacts like specification documents, bug reports, and code implementations. In this work, we leverage natural language and code artifacts to guide LLMs to generate targeted, meaningful tests that highlight meaningful behavioral differences between implementations, including those corresponding to bugs. We introduce DiffSpec, a framework for generating differential tests with LLMs using prompt chaining. We demonstrate the efficacy of DiffSpec on two different systems, namely, eBPF runtimes and Wasm validators. Using DiffSpec, we generated 359 differentiating tests, uncovering at least four distinct and confirmed bugs in eBPF, including a kernel memory leak, inconsistent behavior in jump instructions, and undefined behavior when using the stack pointer. We also found 279 differentiating tests in Wasm validators, that point to at least 2 confirmed and fixed bugs.
- Abstract(参考訳): 差分テストは、コンパイラ、ネットワークプロトコルパーサ、言語ランタイムなど、同じ仕様に準拠した複数の実装を持つソフトウェアシステムのバグを見つける効果的な方法である。
このようなシステムの仕様は、インストラクション・セット・アーキテクチャ(ISA)仕様、Wasm仕様、IETF RFCなどの自然言語文書で標準化されることが多い。
大きな言語モデル(LLM)は、テストの生成と大量の自然言語テキストの処理の両方の可能性を実証しており、仕様文書、バグレポート、コード実装などのアーティファクトを活用するのに適している。
本研究では、自然言語とコードアーティファクトを活用し、LLMをガイドして、バグに対応するものを含む実装間の意味のある振る舞いの違いを強調する、ターゲットとなる有意義なテストを生成する。
本稿では,プロンプト連鎖を用いたLCMによる差分テストを生成するフレームワークであるDiffSpecを紹介する。
本稿では,2つの異なるシステム,すなわちeBPFランタイムとWasmバリデータに対するDiffSpecの有効性を示す。
DiffSpecを使って359の差別化テストを生成し、カーネルメモリリーク、ジャンプ命令の不整合挙動、スタックポインタの使用時の未定義動作を含む、少なくとも4つの異なる、確認されたeBPFのバグを発見した。
Wasmバリデータでは279の差別化テストが発見されました。
関連論文リスト
- SpecTool: A Benchmark for Characterizing Errors in Tool-Use LLMs [77.79172008184415]
SpecToolは、ツール使用タスクのLLM出力のエラーパターンを特定するための新しいベンチマークである。
もっとも顕著なLCMでも,これらの誤りパターンが出力に現れることを示す。
SPECTOOLの分析と洞察を使って、エラー軽減戦略をガイドすることができる。
論文 参考訳(メタデータ) (2024-11-20T18:56:22Z) - MdEval: Massively Multilingual Code Debugging [37.48700033342978]
18のプログラミング言語の3.6Kテストサンプルを含む,最初の大規模多言語デバッグベンチマークを提案する。
本稿では, MDEVAL-INSTRUCT 命令コーパスを導入し, 正しい多言語クエリとソリューションにバグを注入する。
MDEVALにおける実験により,オープンソースモデルとクローズドソースLLM間の顕著な性能差が明らかになった。
論文 参考訳(メタデータ) (2024-11-04T17:36:40Z) - Test smells in LLM-Generated Unit Tests [11.517293765116307]
本研究では,大規模言語モデルの生成した単体テストスイートにおけるテストの匂いの拡散について検討する。
5つのプロンプトエンジニアリング技術で4つのモデルで生成された20,500 LLM生成テストスイートのベンチマークを解析した。
我々は,LLM生成テストスイートと筆記テストスイートの両方において,種々のテスト匂いの出現頻度と発生頻度を同定し,解析する。
論文 参考訳(メタデータ) (2024-10-14T15:35:44Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Mutation-based Consistency Testing for Evaluating the Code Understanding
Capability of LLMs [5.549095839198671]
大きな言語モデル(LLM)は、自然言語とプログラミング言語の両方を処理する際、顕著な能力を示している。
本稿では,LLMのコード理解性能を評価する新しい手法を提案し,特にコードと記述の微妙な差異に着目した。
演算子置換やステートメント削除など,さまざまなタイプのコード突然変異を適用して,一貫性のないコード記述ペアを生成する。
我々は,現在最先端のコード生成ベンチマークであるHumanEval-Xを用いて,GPT-3.5とGPT-4の2つのLLMのケーススタディを行う。
論文 参考訳(メタデータ) (2024-01-11T14:27:43Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench - LLM(Large Language Models)のベンチマーク。
C++、Java、Pythonの4つの主要なバグカテゴリと18のマイナータイプをカバーする。
ゼロショットシナリオで2つの商用および4つのオープンソースモデルを評価する。
論文 参考訳(メタデータ) (2024-01-09T15:46:38Z) - Native Language Identification with Large Language Models [60.80452362519818]
我々はGPTモデルがNLI分類に熟練していることを示し、GPT-4は0ショット設定でベンチマーク11テストセットで91.7%の新たなパフォーマンス記録を樹立した。
また、従来の完全教師付き設定とは異なり、LLMは既知のクラスに制限されずにNLIを実行できることを示す。
論文 参考訳(メタデータ) (2023-12-13T00:52:15Z) - Prompting Code Interpreter to Write Better Unit Tests on Quixbugs
Functions [0.05657375260432172]
単体テストは、ソフトウェア工学において、記述されたコードの正確性と堅牢性をテストするために一般的に使用されるアプローチである。
本研究では,コードインタプリタが生成する単体テストの品質に及ぼす異なるプロンプトの影響について検討する。
生成した単体テストの品質は、提供されたプロンプトのマイナーな詳細の変更に敏感ではないことがわかった。
論文 参考訳(メタデータ) (2023-09-30T20:36:23Z) - Intergenerational Test Generation for Natural Language Processing
Applications [16.63835131985415]
各種NLPアプリケーションの誤動作を検出する自動テスト生成手法を提案する。
この手法をNLPLegoに実装し、シード文の可能性を完全に活用する。
NLPLegoは3つのタスクで約95.7%の精度で1,732, 5301, 261,879の誤った行動を検出することに成功した。
論文 参考訳(メタデータ) (2023-02-21T07:57:59Z) - Zero-Shot Cross-lingual Semantic Parsing [56.95036511882921]
7つのテスト言語に対する並列データを持たないゼロショット問題として,言語間セマンティックパーシングについて検討した。
英文論理形式ペアデータのみを用いて解析知識を付加言語に転送するマルチタスクエンコーダデコーダモデルを提案する。
このシステムは、ゼロショット解析を潜時空間アライメント問題としてフレーム化し、事前訓練されたモデルを改善し、最小のクロスリンガル転送ペナルティで論理形式を生成することができる。
論文 参考訳(メタデータ) (2021-04-15T16:08:43Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
言語モデル(LM)は、事実の知識を捉えるのに驚くほど成功した。
しかし、LMの実際の表現能力の研究は、ほぼ間違いなく英語で行われている。
我々は23の語型的多様言語に対するクローゼスタイルプローブのベンチマークを作成する。
論文 参考訳(メタデータ) (2020-10-13T05:29:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。