論文の概要: Enhancing Future Link Prediction in Quantum Computing Semantic Networks through LLM-Initiated Node Features
- arxiv url: http://arxiv.org/abs/2410.04251v1
- Date: Sat, 5 Oct 2024 18:16:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 08:59:37.478732
- Title: Enhancing Future Link Prediction in Quantum Computing Semantic Networks through LLM-Initiated Node Features
- Title(参考訳): LLM開始ノード機能による量子コンピューティングセマンティックネットワークのリンク予測の高速化
- Authors: Gilchan Park, Paul Baity, Byung-Jun Yoon, Adolfy Hoisie,
- Abstract要約: 本研究では,グラフニューラルネットワークにおけるリンク予測タスクのノード表現を強化するために,LLMを用いたノード特徴の初期化を提案する。
提案手法は,量子コンピューティングセマンティックネットワーク上での様々なリンク予測モデルを用いて評価し,従来のノード埋め込み手法と比較して有効性を示した。
- 参考スコア(独自算出の注目度): 2.137420847424282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is rapidly evolving in both physics and computer science, offering the potential to solve complex problems and accelerate computational processes. The development of quantum chips necessitates understanding the correlations among diverse experimental conditions. Semantic networks built on scientific literature, representing meaningful relationships between concepts, have been used across various domains to identify knowledge gaps and novel concept combinations. Neural network-based approaches have shown promise in link prediction within these networks. This study proposes initializing node features using LLMs to enhance node representations for link prediction tasks in graph neural networks. LLMs can provide rich descriptions, reducing the need for manual feature creation and lowering costs. Our method, evaluated using various link prediction models on a quantum computing semantic network, demonstrated efficacy compared to traditional node embedding techniques.
- Abstract(参考訳): 量子コンピューティングは物理学と計算機科学の両方において急速に進化しており、複雑な問題を解決し、計算プロセスを加速する可能性を提供している。
量子チップの開発は、様々な実験条件間の相関を理解する必要がある。
科学文献に基づくセマンティックネットワークは、概念間の有意義な関係を表すもので、知識ギャップと新しい概念の組み合わせを識別するために様々な領域で使用されている。
ニューラルネットワークベースのアプローチは、これらのネットワーク内のリンク予測において有望であることを示している。
本研究では,グラフニューラルネットワークにおけるリンク予測タスクのノード表現を強化するために,LLMを用いたノード特徴の初期化を提案する。
LLMはリッチな説明を提供し、手動のフィーチャ作成やコスト削減の必要性を減らすことができる。
提案手法は,量子コンピューティングセマンティックネットワーク上での様々なリンク予測モデルを用いて評価し,従来のノード埋め込み手法と比較して有効性を示した。
関連論文リスト
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification [10.069224006497162]
量子・スパイキングニューラルネットワーク(PPF-QSNN)の並列比例融合(Parallel Proportional Fusion of Quantum and Spiking Neural Networks)と呼ばれる新しいアーキテクチャを導入する。
提案したPPF-QSNNは、既存のスパイクニューラルネットワークと、精度、損失、ロバストネスといったメトリクスにわたるシリアル量子ニューラルネットワークの両方より優れている。
本研究は、人工知能計算における量子優位性の発展と応用の基盤となるものである。
論文 参考訳(メタデータ) (2024-04-01T10:35:35Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
量子残差ニューラルネットワーク(QResNets)を実装する量子回路に基づくアルゴリズムを提案する。
我々の研究は、古典的残留ニューラルネットワークの完全な量子的実装の基礎を築いた。
論文 参考訳(メタデータ) (2024-01-29T04:00:51Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
本稿では、将来のネットワークにおける最適化タスクを解決するために、量子コンピュータと量子チャネルを管理するための適応型分散量子コンピューティング手法を提案する。
提案手法に基づいて,スマートグリッド管理やIoT連携,UAV軌道計画など,今後のネットワークにおける協調最適化の潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-09-16T02:44:52Z) - QDCNN: Quantum Dilated Convolutional Neural Network [1.52292571922932]
量子拡張畳み込みニューラルネットワーク(QDCNN)と呼ばれる新しいハイブリッド量子古典型アルゴリズムを提案する。
提案手法は,現代のディープラーニングアルゴリズムに広く応用されている拡張畳み込みの概念を,ハイブリッドニューラルネットワークの文脈にまで拡張する。
提案したQDCNNは,量子畳み込み過程において,計算コストを低減しつつ,より大きなコンテキストを捉えることができる。
論文 参考訳(メタデータ) (2021-10-29T10:24:34Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
量子畳み込みニューラルネットワーク(QCNN)という新しいニューラルネットワークモデルを提案する。
QCNNは実装可能な量子回路に基づいており、古典的畳み込みニューラルネットワークと同様の構造を持つ。
MNISTデータセットの数値シミュレーションにより,本モデルの有効性が示された。
論文 参考訳(メタデータ) (2021-07-08T06:47:34Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
本稿では,従来の通信ネットワークの現状を要約する。
量子技術を活用することでのみ解決できる、いくつかの重要なオープンな研究課題を特定します。
論文 参考訳(メタデータ) (2021-06-07T06:31:02Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。