QKAN: Quantum Kolmogorov-Arnold Networks
- URL: http://arxiv.org/abs/2410.04435v1
- Date: Sun, 6 Oct 2024 10:11:57 GMT
- Title: QKAN: Quantum Kolmogorov-Arnold Networks
- Authors: Petr Ivashkov, Po-Wei Huang, Kelvin Koor, Lirandë Pira, Patrick Rebentrost,
- Abstract summary: A new neural network architecture, called Kolmogorov-Arnold Networks (KAN), has emerged, inspired by the compositional structure of the Kolmogorov-Arnold representation theorem.
Our QKAN exploits powerful quantum linear algebra tools, including quantum singular value transformation, to apply parameterized activation functions on the edges of the network.
QKAN is based on block-encodings, making it inherently suitable for direct quantum input.
- Score: 0.6597195879147557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The potential of learning models in quantum hardware remains an open question. Yet, the field of quantum machine learning persistently explores how these models can take advantage of quantum implementations. Recently, a new neural network architecture, called Kolmogorov-Arnold Networks (KAN), has emerged, inspired by the compositional structure of the Kolmogorov-Arnold representation theorem. In this work, we design a quantum version of KAN called QKAN. Our QKAN exploits powerful quantum linear algebra tools, including quantum singular value transformation, to apply parameterized activation functions on the edges of the network. QKAN is based on block-encodings, making it inherently suitable for direct quantum input. Furthermore, we analyze its asymptotic complexity, building recursively from a single layer to an end-to-end neural architecture. The gate complexity of QKAN scales linearly with the cost of constructing block-encodings for input and weights, suggesting broad applicability in tasks with high-dimensional input. QKAN serves as a trainable quantum machine learning model by combining parameterized quantum circuits with established quantum subroutines. Lastly, we propose a multivariate state preparation strategy based on the construction of the QKAN architecture.
Related papers
- Shedding Light on the Future: Exploring Quantum Neural Networks through Optics [3.1935899800030096]
Quantum neural networks (QNNs) play an important role as an emerging technology in the rapidly developing field of quantum machine learning.
This article reviews the concept of QNNs and their physical realizations, particularly implementations based on quantum optics.
arXiv Detail & Related papers (2024-09-04T08:49:57Z) - Measurement-based quantum machine learning [0.0]
A quantum neural network (QNN) is an object that extends the notion of a classical neural network to quantum models for quantum data.
We propose a universal QNN in this framework which we call the multiple-triangle ansatz (MuTA)
arXiv Detail & Related papers (2024-05-14T05:17:01Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
We introduce a trainable quantum tensor network (QTN) for quantum embedding on a variational quantum circuit (VQC)
QTN enables an end-to-end parametric model pipeline, namely QTN-VQC, from the generation of quantum embedding to the output measurement.
Our experiments on the MNIST dataset demonstrate the advantages of QTN for quantum embedding over other quantum embedding approaches.
arXiv Detail & Related papers (2021-10-06T14:44:51Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
We show how a random network of quantum nodes can be used as a robust hardware for quantum computing.
Our network architecture induces quantum operations by optimising only a single layer of quantum nodes.
In the few-qubit regime, sequences of multiple quantum gates in quantum circuits can be compressed with a single operation.
arXiv Detail & Related papers (2020-03-21T03:29:16Z) - TensorFlow Quantum: A Software Framework for Quantum Machine Learning [36.75544801185366]
We introduce Quantum (TFQ), an open source library for the rapid prototyping of hybrid quantum-classical models for classical or quantum data.
We demonstrate how one can apply TFQ to tackle advanced quantum learning tasks including meta-learning, layerwise learning, Hamiltonian learning, sampling thermal states, variational quantum eigensolvers, classification of quantum phase transitions, generative adversarial networks, and reinforcement learning.
arXiv Detail & Related papers (2020-03-06T01:31:43Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.