Enhanced Variational Quantum Kolmogorov-Arnold Network
- URL: http://arxiv.org/abs/2503.22604v1
- Date: Fri, 28 Mar 2025 16:47:42 GMT
- Title: Enhanced Variational Quantum Kolmogorov-Arnold Network
- Authors: Hikaru Wakaura, Rahmat Mulyawan, Andriyan B. Suksmono,
- Abstract summary: Kolmogorov-Arnold Network (KAN) is a novel multi-layer network model recognized for its efficiency in neuromorphic computing.<n>KAN can be implemented on quantum computers using block encoding and Quantum Signal Processing, but these methods require fault-tolerant quantum devices.<n>We propose the Enhanced Variational Quantum Kolmogorov-Arnold Network (EVQKAN) to overcome this limitation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Kolmogorov-Arnold Network (KAN) is a novel multi-layer network model recognized for its efficiency in neuromorphic computing, where synapses between neurons are trained linearly. Computations in KAN are performed by generating a polynomial vector from the state vector and layer-wise trained synapses, enabling efficient processing. While KAN can be implemented on quantum computers using block encoding and Quantum Signal Processing, these methods require fault-tolerant quantum devices, making them impractical for current Noisy Intermediate-Scale Quantum (NISQ) hardware. We propose the Enhanced Variational Quantum Kolmogorov-Arnold Network (EVQKAN) to overcome this limitation, which emulates KAN through variational quantum algorithms. The EVQKAN ansatz employs a tiling technique to emulate layer matrices, leading to significantly higher accuracy compared to conventional Variational Quantum Kolmogorov-Arnold Network (VQKAN) and Quantum Neural Networks (QNN), even with a smaller number of layers. EVQKAN achieves superior performance with a single-layer architecture, whereas QNN and VQKAN typically struggle. Additionally, EVQKAN eliminates the need for Quantum Signal Processing, enhancing its robustness to noise and making it well-suited for practical deployment on NISQ-era quantum devices.
Related papers
- QKAN: Quantum Kolmogorov-Arnold Networks [0.6597195879147557]
A new neural network architecture, called Kolmogorov-Arnold Networks (KAN), has emerged, inspired by the compositional structure of the Kolmogorov-Arnold representation theorem.
Our QKAN exploits powerful quantum linear algebra tools, including quantum singular value transformation, to apply parameterized activation functions on the edges of the network.
QKAN is based on block-encodings, making it inherently suitable for direct quantum input.
arXiv Detail & Related papers (2024-10-06T10:11:57Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Variational Quantum Circuits Enhanced Generative Adversarial Network [5.209320054725053]
We propose a hybrid quantum-classical architecture for improving GAN (denoted as QC-GAN)
The QC-GAN consists of a quantum variational circuit together with a one-layer neural network, and the discriminator consists of a traditional neural network.
We have also demonstrated the superiority of QC-GAN over an alternative quantum GAN, namely pathGAN, which could hardly generate 16$times$16 or larger images.
arXiv Detail & Related papers (2024-02-02T03:59:35Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
This paper investigates how training of quantum neural network (QNNs) can be done using quantum optimization algorithms.
In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs)
VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets which converge the computation in lesser time than QNN with decent training accuracy.
arXiv Detail & Related papers (2023-03-10T11:24:32Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - QuCNN : A Quantum Convolutional Neural Network with Entanglement Based
Backpropagation [9.760266670459446]
QuCNN is a parameterised multi-quantum-state based neural network layer computing similarities between each quantum filter state and each quantum data state.
Back propagation can be achieved through a single-ancillabit quantum routine.
validated by applying a convolutional layer with a data state and a filter state over a small subset of MNIST images.
arXiv Detail & Related papers (2022-10-11T13:36:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - QFCNN: Quantum Fourier Convolutional Neural Network [4.344289435743451]
We propose a new hybrid quantum-classical circuit, namely Quantum Fourier Convolutional Network (QFCN)
Our model achieves exponential speed-up compared with classical CNN theoretically and improves over the existing best result of quantum CNN.
We demonstrate the potential of this architecture by applying it to different deep learning tasks, including traffic prediction and image classification.
arXiv Detail & Related papers (2021-06-19T04:37:39Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.