U-net based prediction of cerebrospinal fluid distribution and ventricular reflux grading
- URL: http://arxiv.org/abs/2410.04460v1
- Date: Sun, 6 Oct 2024 12:17:42 GMT
- Title: U-net based prediction of cerebrospinal fluid distribution and ventricular reflux grading
- Authors: Melanie Rieff, Fabian Holzberger, Oksana Lapina, Geir Ringstad, Lars Magnus Valnes, Bogna Warsza, Kent-Andre Mardal, Per Kristian Eide, Barbara Wohlmuth,
- Abstract summary: We propose a U-net-based supervised learning model to predict pixel-wise signal increases at their peak after 24 hours.
Using imaging data from just the first two hours post-injection for training yields tracer flow predictions comparable to those trained with additional later-stage scans.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous work shows evidence that cerebrospinal fluid (CSF) plays a crucial role in brain waste clearance processes, and that altered flow patterns are associated with various diseases of the central nervous system. In this study, we investigate the potential of deep learning to predict the distribution in human brain of a gadolinium-based CSF contrast agent (tracer) administered intrathecal. For this, T1-weighted magnetic resonance imaging (MRI) scans taken at multiple time points before and after intrathecal injection were utilized. We propose a U-net-based supervised learning model to predict pixel-wise signal increases at their peak after 24 hours. Its performance is evaluated based on different tracer distribution stages provided during training, including predictions from baseline scans taken before injection. Our findings indicate that using imaging data from just the first two hours post-injection for training yields tracer flow predictions comparable to those trained with additional later-stage scans. The model was further validated by comparing ventricular reflux gradings provided by neuroradiologists, and inter-rater grading among medical experts and the model showed excellent agreement. Our results demonstrate the potential of deep learning-based methods for CSF flow prediction, suggesting that fewer MRI scans could be sufficient for clinical analysis, which might significantly improve clinical efficiency, patient well-being, and lower healthcare costs.
Related papers
- A dual-task mutual learning framework for predicting post-thrombectomy cerebral hemorrhage [42.24368372333753]
We propose a novel prediction framework for measuring postoperative cerebral hemorrhage using only the patient's initial CT scan.
Our method can generate follow-up CT scans better than state-of-the-art methods, and achieves an accuracy of 86.37% in predicting follow-up prognostic labels.
arXiv Detail & Related papers (2024-08-01T22:08:52Z) - TADM: Temporally-Aware Diffusion Model for Neurodegenerative Progression on Brain MRI [4.414541804340033]
Temporally-Aware Diffusion Model (TADM) learns the distribution of structural changes in terms of intensity differences between scans.
During training, we propose to leverage a pre-trained Brain-Age Estimator (BAE) to refine the model's training process.
Our approach will benefit applications, such as predicting patient outcomes or improving treatments for patients.
arXiv Detail & Related papers (2024-06-18T09:00:49Z) - Fusion of Diffusion Weighted MRI and Clinical Data for Predicting
Functional Outcome after Acute Ischemic Stroke with Deep Contrastive Learning [1.4149937986822438]
Stroke is a common disabling neurological condition that affects about one-quarter of the adult population over age 25.
Our proposed fusion model achieves 0.87, 0.80 and 80.45% for AUC, F1-score and accuracy, respectively.
arXiv Detail & Related papers (2024-02-16T18:51:42Z) - Lesion-Specific Prediction with Discriminator-Based Supervised Guided
Attention Module Enabled GANs in Multiple Sclerosis [0.0]
Multiple Sclerosis (MS) is a chronic neurological condition characterized by the development of lesions in the white matter of the brain.
In this study, we propose a novel modification to generative adversarial networks (GANs) to predict future lesion-specific FLAIR MRI for MS at fixed time intervals.
arXiv Detail & Related papers (2022-08-30T20:37:38Z) - Evaluating U-net Brain Extraction for Multi-site and Longitudinal
Preclinical Stroke Imaging [0.4310985013483366]
Convolutional neural networks (CNNs) can improve accuracy and reduce operator time.
We developed a deep-learning mouse brain extraction tool by using a U-net CNN.
We trained, validated, and tested a typical U-net model on 240 multimodal MRI datasets.
arXiv Detail & Related papers (2022-03-11T02:00:27Z) - Computational Image-based Stroke Assessment for Evaluation of
Cerebroprotectants with Longitudinal and Multi-site Preclinical MRI [0.4460373311150658]
We developed, evaluated, and deployed a pipeline for image-based stroke outcome quantification for the Stroke Preclinical Assessment Network (SPAN)
Our fully automated pipeline combines state-of-the-art algorithmic and data analytic approaches to assess stroke outcomes.
Our results demonstrate the efficacy and robustness of our image-based stroke assessments.
arXiv Detail & Related papers (2022-03-11T01:53:30Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
We present a deep neural network method for learning a personal representation for individuals performing a self neuromodulation task, guided by functional MRI (fMRI)
The representation is learned by a self-supervised recurrent neural network, that predicts the Amygdala activity in the next fMRI frame given recent fMRI frames and is conditioned on the learned individual representation.
arXiv Detail & Related papers (2021-12-06T10:16:54Z) - Pseudo-domains in imaging data improve prediction of future disease
status in multi-center studies [57.712855968194305]
We propose a prediction method that can cope with a high number of different scanning sites and a low number of samples per site.
Results show that they improve the prediction accuracy for steatosis after 48 weeks from imaging data acquired at an initial visit and 12-weeks follow-up in liver disease.
arXiv Detail & Related papers (2021-11-15T09:40:54Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein
Segmentation in CT [45.93021999366973]
Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging.
We present a CNNs-based method for accurate airway and artery-vein segmentation in non-contrast computed tomography.
It enjoys superior sensitivity to tenuous peripheral bronchioles, arterioles, and venules.
arXiv Detail & Related papers (2020-12-10T15:56:08Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.