論文の概要: KGARevion: An AI Agent for Knowledge-Intensive Biomedical QA
- arxiv url: http://arxiv.org/abs/2410.04660v2
- Date: Mon, 03 Mar 2025 18:23:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 23:36:47.845533
- Title: KGARevion: An AI Agent for Knowledge-Intensive Biomedical QA
- Title(参考訳): KGARevion:知識集約型バイオメディカルQAのためのAIエージェント
- Authors: Xiaorui Su, Yibo Wang, Shanghua Gao, Xiaolong Liu, Valentina Giunchiglia, Djork-Arné Clevert, Marinka Zitnik,
- Abstract要約: KGARevionは知識グラフに基づくエージェントで、知識集約的な質問に答える。
これは、大きな言語モデルに埋め込まれた潜伏した知識を活用することで、関連する三つ子を生成する。
そして、これらの三重項を知識グラフに対して検証し、エラーをフィルタリングし、正確で文脈的に関係のある情報のみを保持する。
- 参考スコア(独自算出の注目度): 31.080514888803886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biomedical reasoning integrates structured, codified knowledge with tacit, experience-driven insights. Depending on the context, quantity, and nature of available evidence, researchers and clinicians use diverse strategies, including rule-based, prototype-based, and case-based reasoning. Effective medical AI models must handle this complexity while ensuring reliability and adaptability. We introduce KGARevion, a knowledge graph-based agent that answers knowledge-intensive questions. Upon receiving a query, KGARevion generates relevant triplets by leveraging the latent knowledge embedded in a large language model. It then verifies these triplets against a grounded knowledge graph, filtering out errors and retaining only accurate, contextually relevant information for the final answer. This multi-step process strengthens reasoning, adapts to different models of medical inference, and outperforms retrieval-augmented generation-based approaches that lack effective verification mechanisms. Evaluations on medical QA benchmarks show that KGARevion improves accuracy by over 5.2% over 15 models in handling complex medical queries. To further assess its effectiveness, we curated three new medical QA datasets with varying levels of semantic complexity, where KGARevion improved accuracy by 10.4%. The agent integrates with different LLMs and biomedical knowledge graphs for broad applicability across knowledge-intensive tasks. We evaluated KGARevion on AfriMed-QA, a newly introduced dataset focused on African healthcare, demonstrating its strong zero-shot generalization to underrepresented medical contexts.
- Abstract(参考訳): バイオメディカル推論は、構造化された体系化された知識と、暗黙的な経験駆動の洞察を統合する。
利用可能な証拠の文脈、量、性質に応じて、研究者と臨床医はルールベース、プロトタイプベース、ケースベース推論を含む様々な戦略を使用する。
効果的な医療AIモデルは、信頼性と適応性を確保しながら、この複雑さを扱う必要がある。
我々は知識グラフに基づくエージェントであるKGARevionを紹介した。
クエリを受信すると、KGARevionは、大きな言語モデルに埋め込まれた潜在知識を活用することで、関連する三つ子を生成する。
そして、これらの三重項を知識グラフに対して検証し、エラーをフィルタリングし、最終回答の正確で文脈的に関係のある情報のみを保持する。
この多段階プロセスは推論を強化し、医学的推論の異なるモデルに適応し、効果的な検証機構を欠いた検索強化世代ベースのアプローチより優れている。
医学QAベンチマークの評価によると、KGARevionは複雑な医療クエリを扱う場合、15モデル以上の精度を5.2%以上改善している。
さらに有効性を評価するために、KGARevionが精度を10.4%向上した、さまざまなレベルの意味複雑性を持つ3つの新しい医療QAデータセットをキュレートした。
エージェントは異なるLLMとバイオメディカル知識グラフを統合し、知識集約的なタスクに適用可能である。
KGARevion on AfriMed-QA, AfriMed-QA, a new introduced focused focus on African health, showed its strong zero-shot generalization to underrepresented medical contexts。
関連論文リスト
- Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
大規模言語モデル(LLM)は、しばしばオープンエンドの医学的問題に苦しむ。
本稿では,構造化医療推論を利用した新しいアプローチを提案する。
我々の手法は85.8のファクチュアリティスコアを達成し、微調整されたモデルを上回る。
論文 参考訳(メタデータ) (2025-03-05T05:24:55Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
本研究は,AI支援医療診断における信頼性の重要課題について論じる。
本研究は,診断に自信がなければ,診断システムによる意思決定の回避を可能にする選択予測手法に焦点をあてる。
我々は、選択予測タスクにおける信頼性を高めるための新しい最先端手法であるHUQ-2を紹介する。
論文 参考訳(メタデータ) (2025-02-25T10:15:21Z) - Adaptive Knowledge Graphs Enhance Medical Question Answering: Bridging the Gap Between LLMs and Evolving Medical Knowledge [6.977177904883792]
AMG-RAGは、医療知識グラフの構築と継続的な更新を自動化する包括的なフレームワークである。
推論を統合し、PubMedやWikiSearchといった現在の外部証拠を検索する。
MEDQAのF1スコアは74.1%、MEDMCQAの精度は66.34パーセントで、同等のモデルと10倍から100倍のモデルの両方を上回っている。
論文 参考訳(メタデータ) (2025-02-18T16:29:45Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
近年,Med-LVLM (Med-LVLMs) の進歩により,対話型診断ツールの新たな可能性が高まっている。
Med-LVLMは、しばしば事実の幻覚に悩まされ、誤った診断につながることがある。
我々は,Med-LVLMの現実性を高めるために,多目的マルチモーダルRAGシステムMMed-RAGを提案する。
論文 参考訳(メタデータ) (2024-10-16T23:03:27Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - A Preliminary Study of o1 in Medicine: Are We Closer to an AI Doctor? [33.70022886795487]
OpenAIのo1は、強化学習戦略を使ったチェーン・オブ・ソート技術を使った最初のモデルとして際立っている。
本報告では、様々な医療シナリオにおけるo1の総合的な探索を行い、理解、推論、多言語性という3つの重要な側面について検討する。
論文 参考訳(メタデータ) (2024-09-23T17:59:43Z) - ScholarChemQA: Unveiling the Power of Language Models in Chemical Research Question Answering [54.80411755871931]
質問回答(QA)は、言語モデルの推論と知識の深さを効果的に評価する。
化学QAは、複雑な化学情報を理解しやすい形式に効果的に翻訳することで、教育と研究の両方において重要な役割を担っている。
このデータセットは、不均衡なデータ分散や、潜在的に有用である可能性のあるかなりの量の未ラベルデータを含む、典型的な現実世界の課題を反映している。
収集したデータを完全に活用して,化学的な問題に効果的に答えるQAMatchモデルを提案する。
論文 参考訳(メタデータ) (2024-07-24T01:46:55Z) - emrQA-msquad: A Medical Dataset Structured with the SQuAD V2.0 Framework, Enriched with emrQA Medical Information [2.2083091880368855]
emrQA-msquadデータセットは、医学用語の複雑さに対処するために開発された。
Span抽出タスク専用の医療データセットが導入され、システムの堅牢性が強化された。
BERT、RoBERTa、Tiny RoBERTaといったモデルの微調整により、F1スコアの範囲での応答精度は0.75から1.00に向上した。
論文 参考訳(メタデータ) (2024-04-18T10:06:00Z) - XAIQA: Explainer-Based Data Augmentation for Extractive Question
Answering [1.1867812760085572]
我々は,電子カルテで自然に利用可能なデータから,合成QAペアを大規模に生成するための新しいアプローチであるXAIQAを紹介する。
本手法は、分類モデル説明器の考え方を用いて、医療規範に対応する医療概念に関する質問や回答を生成する。
論文 参考訳(メタデータ) (2023-12-06T15:59:06Z) - MKA: A Scalable Medical Knowledge Assisted Mechanism for Generative
Models on Medical Conversation Tasks [3.9571320117430866]
このメカニズムは、一般的な神経生成モデルを支援し、医療会話タスクにおけるより良いパフォーマンスを達成することを目的としている。
医療固有の知識グラフは、6種類の医療関連情報を含むメカニズム内に設計されている。
評価結果は,本機構と組み合わせたモデルが,複数の自動評価指標において元の手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-12-05T04:55:54Z) - Generating Explanations in Medical Question-Answering by Expectation
Maximization Inference over Evidence [33.018873142559286]
本稿では,医療用QAシステムによって予測される回答に対して,自然言語による説明を生成するための新しい手法を提案する。
本システムは,説明生成過程における説明の質を高めるために,医学教科書から知識を抽出する。
論文 参考訳(メタデータ) (2023-10-02T16:00:37Z) - Knowledge-injected Prompt Learning for Chinese Biomedical Entity
Normalization [6.927883826415262]
本稿では,バイオメディカルエンティティ正規化(BEN)課題に取り組むために,知識注入型プロンプト学習(PL-Knowledge)手法を提案する。
具体的には、候補エンティティマッチング、知識抽出、知識符号化、知識注入、予測出力の5段階からなる。
医療機関に含まれる知識項目を効果的に符号化することにより、追加の知識は、医療機関間の潜伏関係を捕捉するモデルの能力を高める。
論文 参考訳(メタデータ) (2023-08-23T09:32:40Z) - A Review on Knowledge Graphs for Healthcare: Resources, Applications, and Promises [52.31710895034573]
この研究は、医療知識グラフ(HKG)の最初の包括的なレビューを提供する。
HKG構築のためのパイプラインと重要なテクニックを要約し、一般的な利用方法も示す。
アプリケーションレベルでは、さまざまなヘルスドメインにわたるHKGの正常な統合を検討します。
論文 参考訳(メタデータ) (2023-06-07T21:51:56Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
汎用AIは、さまざまなデータ型を解釈する汎用性のために、制限に対処する可能性を秘めている。
本稿では,最初のオープンソースかつ軽量な視覚言語基盤モデルであるBiomedGPTを提案する。
論文 参考訳(メタデータ) (2023-05-26T17:14:43Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
医療人工知能(MAGI)は、1つの基礎モデルで異なる医療課題を解くことができる。
我々は、Micical-knedge-enhanced mulTimOdal pretRaining (motoR)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-26T01:26:19Z) - BERT Based Clinical Knowledge Extraction for Biomedical Knowledge Graph
Construction and Analysis [0.4893345190925178]
本稿では,バイオメディカル臨床ノートからの知識抽出と分析のためのエンドツーエンドアプローチを提案する。
提案フレームワークは, 関連構造化情報を高精度に抽出できる。
論文 参考訳(メタデータ) (2023-04-21T14:45:33Z) - HiPrompt: Few-Shot Biomedical Knowledge Fusion via Hierarchy-Oriented
Prompting [33.1455954220194]
HiPromptは、監督効率の良い知識融合フレームワークである。
階層指向のプロンプトを通じて、大規模言語モデルの数発の推論能力を引き出す。
収集したKG-Hi-BKFベンチマークデータセットの実験的結果は、HiPromptの有効性を示している。
論文 参考訳(メタデータ) (2023-04-12T16:54:26Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - DIVERSE: bayesian Data IntegratiVE learning for precise drug ResponSE
prediction [27.531532648298768]
DIVERSEは、細胞株、薬物、遺伝子相互作用のデータから薬物応答を予測するフレームワークです。
ステップ的な方法でデータソースを体系的に統合し、各追加データセットの重要性を順番に検証する。
3つの最先端のアプローチを含む他の5つの方法を明らかに上回る。
論文 参考訳(メタデータ) (2021-03-31T12:40:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。