Matrix-weighted networks for modeling multidimensional dynamics
- URL: http://arxiv.org/abs/2410.05188v1
- Date: Mon, 7 Oct 2024 16:47:30 GMT
- Title: Matrix-weighted networks for modeling multidimensional dynamics
- Authors: Yu Tian, Sadamori Kojaku, Hiroki Sayama, Renaud Lambiotte,
- Abstract summary: We propose a novel, general framework for modeling multidimensional interacting dynamics: matrix-weighted networks (MWNs)
We present the mathematical foundations of MWNs and examine consensus dynamics and random walks within this context.
Our results reveal that the coherence of MWNs gives rise to non-trivial steady states that generalize the notions of communities and structural balance in traditional networks.
- Score: 5.257502867974538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Networks are powerful tools for modeling interactions in complex systems. While traditional networks use scalar edge weights, many real-world systems involve multidimensional interactions. For example, in social networks, individuals often have multiple interconnected opinions that can affect different opinions of other individuals, which can be better characterized by matrices. We propose a novel, general framework for modeling such multidimensional interacting dynamics: matrix-weighted networks (MWNs). We present the mathematical foundations of MWNs and examine consensus dynamics and random walks within this context. Our results reveal that the coherence of MWNs gives rise to non-trivial steady states that generalize the notions of communities and structural balance in traditional networks.
Related papers
- Hierarchical-Graph-Structured Edge Partition Models for Learning Evolving Community Structure [0.9208007322096532]
We propose a novel dynamic network model to capture evolving latent communities within temporal networks.
Our model enables the inferred community structure to merge, split, and interact with one another, providing a comprehensive understanding of complex network dynamics.
arXiv Detail & Related papers (2024-11-18T12:48:15Z) - Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Riemannian Residual Neural Networks [58.925132597945634]
We show how to extend the residual neural network (ResNet)
ResNets have become ubiquitous in machine learning due to their beneficial learning properties, excellent empirical results, and easy-to-incorporate nature when building varied neural networks.
arXiv Detail & Related papers (2023-10-16T02:12:32Z) - Fast inference of latent space dynamics in huge relational event
networks [0.0]
We propose a likelihood-based algorithm that can deal with huge event networks.
In this work we propose a hierarchical strategy for inferring network community dynamics embedded into an interpretable latent space.
To make the framework feasible for large networks we borrow from machine learning optimization methodology.
arXiv Detail & Related papers (2023-03-29T15:18:56Z) - Piecewise-Velocity Model for Learning Continuous-time Dynamic Node
Representations [0.0]
Piecewise-Veable Model (PiVeM) for representation of continuous-time dynamic networks.
We show that PiVeM can successfully represent network structure and dynamics in ultra-low two-dimensional spaces.
It outperforms relevant state-of-art methods in downstream tasks such as link prediction.
arXiv Detail & Related papers (2022-12-23T13:57:56Z) - CS-MLGCN : Multiplex Graph Convolutional Networks for Community Search
in Multiplex Networks [0.0]
We propose a query-driven graph convolutional network in multiplex networks, CS-MLGCN, that can capture flexible community structures.
Experiments on real-world graphs with ground-truth communities validate the quality of the solutions we obtain.
arXiv Detail & Related papers (2022-10-17T07:47:19Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
We first show that ResNets fail to be meaningful dynamical in this richer sense.
We then demonstrate that neural network models can learn to represent continuous dynamical systems.
We introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures.
arXiv Detail & Related papers (2020-08-05T22:54:09Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - Relational State-Space Model for Stochastic Multi-Object Systems [24.234120525358456]
This paper introduces the relational state-space model (R-SSM), a sequential hierarchical latent variable model.
R-SSM makes use of graph neural networks (GNNs) to simulate the joint state transitions of multiple correlated objects.
The utility of R-SSM is empirically evaluated on synthetic and real time-series datasets.
arXiv Detail & Related papers (2020-01-13T03:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.