論文の概要: NeuroBOLT: Resting-state EEG-to-fMRI Synthesis with Multi-dimensional Feature Mapping
- arxiv url: http://arxiv.org/abs/2410.05341v1
- Date: Mon, 7 Oct 2024 02:47:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 19:17:28.541516
- Title: NeuroBOLT: Resting-state EEG-to-fMRI Synthesis with Multi-dimensional Feature Mapping
- Title(参考訳): NeuroBOLT:多次元特徴マッピングを用いた静止状態脳波-fMRI合成
- Authors: Yamin Li, Ange Lou, Ziyuan Xu, Shengchao Zhang, Shiyu Wang, Dario J. Englot, Soheil Kolouri, Daniel Moyer, Roza G. Bayrak, Catie Chang,
- Abstract要約: 我々は,脳内のfMRI活動信号に生の脳波データを変換するためにNeuroBOLT,すなわちNeuro-to-BOLD Transformerを導入する。
実験の結果,NeuroBOLTは一次感覚野,高レベル認知領域,深部皮質下脳領域から静止状態のfMRI信号を効果的に再構成することがわかった。
- 参考スコア(独自算出の注目度): 9.423808859117122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Functional magnetic resonance imaging (fMRI) is an indispensable tool in modern neuroscience, providing a non-invasive window into whole-brain dynamics at millimeter-scale spatial resolution. However, fMRI is constrained by issues such as high operation costs and immobility. With the rapid advancements in cross-modality synthesis and brain decoding, the use of deep neural networks has emerged as a promising solution for inferring whole-brain, high-resolution fMRI features directly from electroencephalography (EEG), a more widely accessible and portable neuroimaging modality. Nonetheless, the complex projection from neural activity to fMRI hemodynamic responses and the spatial ambiguity of EEG pose substantial challenges both in modeling and interpretability. Relatively few studies to date have developed approaches for EEG-fMRI translation, and although they have made significant strides, the inference of fMRI signals in a given study has been limited to a small set of brain areas and to a single condition (i.e., either resting-state or a specific task). The capability to predict fMRI signals in other brain areas, as well as to generalize across conditions, remain critical gaps in the field. To tackle these challenges, we introduce a novel and generalizable framework: NeuroBOLT, i.e., Neuro-to-BOLD Transformer, which leverages multi-dimensional representation learning from temporal, spatial, and spectral domains to translate raw EEG data to the corresponding fMRI activity signals across the brain. Our experiments demonstrate that NeuroBOLT effectively reconstructs resting-state fMRI signals from primary sensory, high-level cognitive areas, and deep subcortical brain regions, achieving state-of-the-art accuracy and significantly advancing the integration of these two modalities.
- Abstract(参考訳): 機能的磁気共鳴イメージング(fMRI)は、現代の神経科学において必須のツールであり、ミリスケール空間分解能において脳全体のダイナミックスに非侵襲的な窓を提供する。
しかし、fMRIは、高い演算コストや運動能力といった問題によって制約されている。
クロスモダリティ合成と脳のデコーディングの急速な進歩により、ディープニューラルネットワークは脳波(EEG)から直接、より広くアクセス可能でポータブルなニューロイメージングのモダリティを推定するための有望な解決策として登場した。
それでも、神経活動からfMRIへの複雑な投射と脳波の空間的あいまいさは、モデリングと解釈可能性の両方において重大な課題を生んでいる。
比較的少数の研究が脳波-fMRI翻訳のアプローチを開発しており、それらは大きな進歩を遂げているが、与えられた研究におけるfMRI信号の推測は、少数の脳領域と単一の状態(つまり、静止状態または特定のタスク)に限られている。
他の脳領域におけるfMRI信号の予測能力や、条件をまたいだ一般化能力は、この分野において重要なギャップを保っている。
これらの課題に対処するために、ニューロボルト(Neuro-to-BOLD Transformer)という、時間的、空間的、スペクトル的な領域から多次元の表現学習を活用して、生の脳波データを脳内の対応するfMRI活動信号に翻訳する新しい一般化可能なフレームワークを導入する。
実験の結果,NeuroBOLTは一次感覚野,高次認知領域,深部皮質脳野から静止状態のfMRI信号を効果的に再構成し,最先端の精度を達成し,これらの2つのモードの統合を著しく促進することがわかった。
関連論文リスト
- Latent Representation Learning for Multimodal Brain Activity Translation [14.511112110420271]
本稿では、空間的および時間的解像度ギャップをモダリティに橋渡しするSAMBA(Spatiotemporal Alignment of Multimodal Brain Activity)フレームワークを提案する。
SAMBAは、電気生理学的記録のスペクトルフィルタリングのための新しい注目ベースのウェーブレット分解を導入した。
SAMBAの学習は、翻訳の他に、脳情報処理の豊かな表現も学べることが示されている。
論文 参考訳(メタデータ) (2024-09-27T05:50:29Z) - CATD: Unified Representation Learning for EEG-to-fMRI Cross-Modal Generation [6.682531937245544]
本稿では,ニューロイメージングの終端から終端までのクロスモーダル合成のための条件付き時間拡散(CATD)フレームワークを提案する。
提案フレームワークは、ニューロイメージングのクロスモーダル合成のための新しいパラダイムを確立する。
パーキンソン病の予測を改善し、異常な脳領域を同定するといった医療応用の可能性を示している。
論文 参考訳(メタデータ) (2024-07-16T11:31:38Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - Leveraging sinusoidal representation networks to predict fMRI signals
from EEG [3.3121941932506473]
本稿では,マルチチャネル脳波から直接fMRI信号を予測できる新しいアーキテクチャを提案する。
本モデルは,脳波の周波数情報を学習するための正弦波表現ネットワーク(SIREN)を実装して実現している。
我々は,脳波-fMRI同時データセットを8被験者で評価し,脳皮質下 fMRI 信号の予測の可能性について検討した。
論文 参考訳(メタデータ) (2023-11-06T03:16:18Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Metadata-Conditioned Generative Models to Synthesize
Anatomically-Plausible 3D Brain MRIs [12.492451825171408]
本稿では, メタデータ条件付きMRI(例えば, 年齢, 性別別MRI)を合成するための新しい生成モデルであるBrain Synthを提案する。
以上の結果から, 合成MRIの脳領域の半数以上が解剖学的に正確であり, 実際のMRIと合成MRIの差は小さいことが示唆された。
われわれの合成MRIは畳み込みニューラルネットワークのトレーニングを大幅に改善し、加速度的老化効果を同定する。
論文 参考訳(メタデータ) (2023-10-07T00:05:47Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
我々はfMRIデコーディングと符号化の両方に対処する統合フレームワークを導入する。
本モデルでは、fMRI信号から視覚刺激を同時に回復し、統合された枠組み内の画像から脳活動を予測する。
論文 参考訳(メタデータ) (2023-03-26T14:14:58Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。