論文の概要: Deep Learning Methods for S Shaped Utility Maximisation with a Random Reference Point
- arxiv url: http://arxiv.org/abs/2410.05524v1
- Date: Mon, 7 Oct 2024 22:07:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 18:18:04.982518
- Title: Deep Learning Methods for S Shaped Utility Maximisation with a Random Reference Point
- Title(参考訳): ランダム基準点を用いたS字型ユーティリティ最大化のためのディープラーニング手法
- Authors: Ashley Davey, Harry Zheng,
- Abstract要約: 深層学習法と双対解法を用いて問題を解くための数値解法を開発した。
深層学習法を用いて、原始問題と双対問題の両方に対して関連するハミルトン・ヤコビ・ベルマン方程式を解く。
完全市場と不完全市場の両方において、この非凹凸問題の解を、ベンチマークに依存するランダム関数である定式化ユーティリティの解と比較する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the portfolio optimisation problem where the terminal function is an S-shaped utility applied at the difference between the wealth and a random benchmark process. We develop several numerical methods for solving the problem using deep learning and duality methods. We use deep learning methods to solve the associated Hamilton-Jacobi-Bellman equation for both the primal and dual problems, and the adjoint equation arising from the stochastic maximum principle. We compare the solution of this non-concave problem to that of concavified utility, a random function depending on the benchmark, in both complete and incomplete markets. We give some numerical results for power and log utilities to show the accuracy of the suggested algorithms.
- Abstract(参考訳): 本稿では、端末関数が富とランダムなベンチマークプロセスの差に適用されるS字型ユーティリティであるポートフォリオ最適化問題を考察する。
深層学習法と双対解法を用いて問題を解くための数値解法を開発した。
深層学習法を用いて、原始問題と双対問題の両方に対して関連するハミルトン・ヤコビ・ベルマン方程式と、確率的最大原理から生じる随伴方程式を解く。
完全市場と不完全市場の両方において、この非凹凸問題の解を、ベンチマークに依存するランダム関数である定式化ユーティリティの解と比較する。
提案アルゴリズムの精度を示すために,電力・ログユーティリティの数値計算結果を示す。
関連論文リスト
- Hamilton-Jacobi Based Policy-Iteration via Deep Operator Learning [9.950128864603599]
我々は、DeepONetと最近開発されたポリシースキームを組み込んで、最適制御問題を数値的に解く。
ニューラルネットワークをトレーニングすると、最適制御問題とHJB方程式の解を素早く推測できる。
論文 参考訳(メタデータ) (2024-06-16T12:53:17Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
本稿では,主観的最適度と関連するリスク割り当ての公平性に着目し,重要な理論的側面について論じる。
私たちが提供しているアルゴリズムは、予備項の学習、二重表現の最適化、およびそれに対応する公正なリスク割り当てを可能にします。
論文 参考訳(メタデータ) (2023-02-02T22:16:49Z) - A deep learning method for solving stochastic optimal control problems driven by fully-coupled FBSDEs [1.0703175070560689]
最初にこの問題をStackelberg微分ゲーム問題(リーダー-フォロワー問題)に変換する。
ユーティリティーモデルによる投資消費問題の2つの例を計算した。
その結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-04-12T13:31:19Z) - Learning the Markov Decision Process in the Sparse Gaussian Elimination [0.0]
スパースガウス除去のための学習に基づくアプローチを提案する。
スパースソルバの主モジュールに対するQ-Learningアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-30T08:56:39Z) - Numerical Solution of Stiff Ordinary Differential Equations with Random
Projection Neural Networks [0.0]
正規微分方程式(ODE)の解に対する乱射影ニューラルネットワーク(RPNN)に基づく数値スキームを提案する。
提案手法は剛性の影響を受けずに高い数値近似精度を示し,textttode45 と textttode15s の関数よりも優れていた。
論文 参考訳(メタデータ) (2021-08-03T15:49:17Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
無限水平マルコフ決定過程(MDP)における最適政策学習の問題を考える。
リプシッツ連続関数を用いた凸プログラミング問題に対してミラー・ディクセントの変種が提案されている。
このアルゴリズムを一般の場合において解析し,提案手法の動作中に誤差を蓄積しない収束率の推定値を得る。
論文 参考訳(メタデータ) (2021-02-27T19:28:39Z) - Deep Learning for Constrained Utility Maximisation [0.0]
本稿では,ディープラーニングを用いた制御問題を解くための2つのアルゴリズムを提案する。
最初のアルゴリズムはハミルトン・ヤコビ・ベルマン方程式を通じてマルコフ問題を解く。
2つ目は、非マルコフ的問題を解くために双対法の全力を利用する。
論文 参考訳(メタデータ) (2020-08-26T18:40:57Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。