論文の概要: Compressed space quantum approximate optimization algorithm for constrained combinatorial optimization
- arxiv url: http://arxiv.org/abs/2410.05703v1
- Date: Tue, 8 Oct 2024 05:48:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 16:59:10.141917
- Title: Compressed space quantum approximate optimization algorithm for constrained combinatorial optimization
- Title(参考訳): 制約付き組合せ最適化のための圧縮空間量子近似最適化アルゴリズム
- Authors: Tatsuhiko Shirai, Nozomu Togawa,
- Abstract要約: 圧縮された空間を設計する手法を導入し,その実現可能な解空間を元より少ない量子ビットで表現する。
次に、この縮小空間内の準最適解を求める圧縮空間 QAOA を提案する。
- 参考スコア(独自算出の注目度): 6.407238428292173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combinatorial optimization is a promising area for achieving quantum speedup. Quantum approximate optimization algorithm (QAOA) is designed to search for low-energy states of the Ising model, which correspond to near-optimal solutions of combinatorial optimization problems (COPs). However, effectively dealing with constraints of COPs remains a significant challenge. Existing methods, such as tailoring mixing operators, are typically limited to specific constraint types, like one-hot constraints. To address these limitations, we introduce a method for engineering a compressed space that represents the feasible solution space with fewer qubits than the original. Our approach includes a scalable technique for determining the unitary transformation between the compressed and original spaces on gate-based quantum computers. We then propose compressed space QAOA, which seeks near-optimal solutions within this reduced space, while utilizing the Ising model formulated in the original Hilbert space. Experimental results on a quantum simulator demonstrate the effectiveness of our method in solving various constrained COPs.
- Abstract(参考訳): 組合せ最適化は量子スピードアップを達成する上で有望な分野である。
量子近似最適化アルゴリズム(QAOA)は、組合せ最適化問題(COP)の準最適解に対応するIsingモデルの低エネルギー状態を求めるように設計されている。
しかし、COPの制約を効果的に扱うことは依然として大きな課題である。
混合演算子を調整するといった既存の手法は、通常1ホット制約のような特定の制約タイプに限られる。
これらの制約に対処するため、圧縮された空間を設計する手法を導入し、その実現可能な解空間を元のより少ないキュービットで表現する。
我々の手法は、ゲートベースの量子コンピュータ上で圧縮された空間と元の空間の間のユニタリ変換を決定するスケーラブルな手法を含む。
次に、この縮小空間内の準最適解を求める圧縮空間 QAOA を提案し、元のヒルベルト空間で定式化されたイジングモデルを利用する。
量子シミュレータの実験結果から,様々な制約付きCOPの解法の有効性が示された。
関連論文リスト
- Compressed sensing enhanced by quantum approximate optimization algorithm [0.0]
本稿では,量子サブルーチンを用いた大規模圧縮センシング問題に対処する枠組みを提案する。
本研究は, 量子コンピュータを圧縮センシング分野に適用する有望な方法を探るものである。
論文 参考訳(メタデータ) (2024-03-26T05:26:51Z) - Post-processing variationally scheduled quantum algorithm for constrained combinatorial optimization problems [6.407238428292173]
本稿では,制約付き最適化問題(COP)の解法として,変分計画量子アルゴリズム(pVSQA)を提案する。
pVSQAは変分法と後処理技術を組み合わせたものである。
我々は,量子アニールとゲート型量子デバイスにpVSQAを実装した。
論文 参考訳(メタデータ) (2023-09-15T03:09:16Z) - Constrained Optimization via Quantum Zeno Dynamics [23.391640416533455]
量子ゼノダイナミクスを用いて、不等式を含む複数の任意の制約で最適化問題を解く手法を提案する。
量子最適化のダイナミクスは、フォールトトレラントな量子コンピュータ上の制約内部分空間に効率的に制限できることを示す。
論文 参考訳(メタデータ) (2022-09-29T18:00:40Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - Constrained Quantum Optimization for Extractive Summarization on a
Trapped-ion Quantum Computer [13.528362112761805]
本稿では,量子ハードウェアの制約を保存する量子最適化アルゴリズムの,これまでで最大の実行方法を示す。
我々は、最大20キュービットと2キュービットゲート深さ最大159の量子進化を制限するXY-QAOA回路を実行する。
本稿では,アルゴリズムのトレードオフと,短期量子ハードウェア上での実行に対する影響について論じる。
論文 参考訳(メタデータ) (2022-06-13T16:21:04Z) - Constrained mixers for the quantum approximate optimization algorithm [55.41644538483948]
ヒルベルト空間全体の部分空間への発展を制限する混合作用素を構築するための枠組みを提案する。
我々は,「ワンホット」状態の部分空間を保存するために設計された「XY」ミキサーを,多くの計算基底状態によって与えられる部分空間の一般の場合に一般化する。
我々の分析は、現在知られているよりもCXゲートが少ない"XY"ミキサーのトロタライズも有効である。
論文 参考訳(メタデータ) (2022-03-11T17:19:26Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。