論文の概要: Learning to Race in Extreme Turning Scene with Active Exploration and Gaussian Process Regression-based MPC
- arxiv url: http://arxiv.org/abs/2410.05740v1
- Date: Tue, 8 Oct 2024 06:56:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 13:09:48.741893
- Title: Learning to Race in Extreme Turning Scene with Active Exploration and Gaussian Process Regression-based MPC
- Title(参考訳): 能動探索とガウス過程回帰に基づくMPCによる極端旋回シーンでのレース学習
- Authors: Guoqiang Wu, Cheng Hu, Wangjia Weng, Zhouheng Li, Yonghao Fu, Lei Xie, Hongye Su,
- Abstract要約: レースにおける極端なコーナーリングは、しばしば大きなサイドスリップ角を誘導し、車両制御において恐ろしい挑戦となる。
本稿では,AEDGPR(Active Exploration with Double GPR)システムを提案する。
提案アルゴリズムは,Simulink-Carsimプラットフォーム上でのシミュレーションと,1/10スケールのRC車両を用いた実験により検証された。
- 参考スコア(独自算出の注目度): 12.133328085287497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extreme cornering in racing often induces large side-slip angles, presenting a formidable challenge in vehicle control. To tackle this issue, this paper introduces an Active Exploration with Double GPR (AEDGPR) system. The system initiates by planning a minimum-time trajectory with a Gaussian Process Regression(GPR) compensated model. The planning results show that in the cornering section, the yaw angular velocity and side-slip angle are in opposite directions, indicating that the vehicle is drifting. In response, we develop a drift controller based on Model Predictive Control (MPC) and incorporate Gaussian Process Regression to correct discrepancies in the vehicle dynamics model. Moreover, the covariance from the GPR is employed to actively explore various cornering states, aiming to minimize trajectory tracking errors. The proposed algorithm is validated through simulations on the Simulink-Carsim platform and experiments using a 1/10 scale RC vehicle.
- Abstract(参考訳): レースにおける極端なコーナーリングは、しばしば大きなサイドスリップ角を誘導し、車両制御において恐ろしい挑戦となる。
本稿では,AEDGPR(Active Exploration with Double GPR)システムを提案する。
このシステムは、ガウス過程回帰(GPR)補償モデルを用いて最小時間軌道を計画することで開始する。
計画結果は、コーナー部においてヨー角速度とサイドスリップ角が反対方向であることを示し、車両がドリフトしていることを示す。
そこで本研究では,モデル予測制御(MPC)に基づくドリフトコントローラを開発し,ガウス過程回帰を車両力学モデルにおける相違点の補正に組み込んだ。
さらに, GPRからの共分散は, 軌跡追跡誤差の最小化を目的として, 様々なコーナー状態の探索に有効である。
提案アルゴリズムは,Simulink-Carsimプラットフォーム上でのシミュレーションと,1/10スケールのRC車両を用いた実験により検証された。
関連論文リスト
- Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach [51.76826149868971]
モンテカルロシミュレーションによる政策評価は多くのMC強化学習(RL)アルゴリズムの中核にある。
本研究では,異なる長さの軌跡を用いた回帰推定器の平均二乗誤差のサロゲートとして品質指標を提案する。
本稿では,Robust and Iterative Data Collection Strategy Optimization (RIDO) という適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-17T11:47:56Z) - Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models [60.87795376541144]
World Model(ワールドモデル)は、エージェントの次の状態を予測できるニューラルネットワークである。
エンド・ツー・エンドのトレーニングでは、人間のデモで観察された状態と整合してエラーから回復する方法を学ぶ。
クローズドループ試験における先行技術に有意な改善がみられた定性的,定量的な結果を示す。
論文 参考訳(メタデータ) (2024-09-25T06:48:25Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - A Tricycle Model to Accurately Control an Autonomous Racecar with Locked
Differential [71.53284767149685]
自動オープンホイールレースカーの側面力学に対するロックディファレンシャルの影響をモデル化するための新しい定式化を提案する。
本稿では,マイクロステップの離散化手法を用いて,動的に線形化し,実時間実装に適した予測を行う。
論文 参考訳(メタデータ) (2023-12-22T16:29:55Z) - Partial End-to-end Reinforcement Learning for Robustness Against Modelling Error in Autonomous Racing [0.0]
本稿では、自動運転車における強化学習(RL)ソリューションの性能向上の問題に対処する。
計画タスクと制御タスクを分離する部分的なエンドツーエンドアルゴリズムを提案する。
従来の制御器のロバスト性を活用することにより,本アルゴリズムは標準のエンドツーエンドアルゴリズムよりもモデルミスマッチに対するロバスト性を向上する。
論文 参考訳(メタデータ) (2023-12-11T14:27:10Z) - Tuning Path Tracking Controllers for Autonomous Cars Using Reinforcement
Learning [0.0]
本稿では,自動運転車のための強化学習(Reinforcement Learning, RL)に基づく適応経路追跡制御システムを提案する。
トラッカーのチューニングは、学習されたQラーニングアルゴリズムを用いて、横方向および操舵軌道誤差を最小化する。
論文 参考訳(メタデータ) (2023-01-09T14:17:12Z) - Motion Planning and Control for Multi Vehicle Autonomous Racing at High
Speeds [100.61456258283245]
本稿では,自律走行のための多層移動計画と制御アーキテクチャを提案する。
提案手法はダララのAV-21レースカーに適用され、楕円形のレーストラックで25$m/s2$まで加速試験された。
論文 参考訳(メタデータ) (2022-07-22T15:16:54Z) - Collision-Free Navigation using Evolutionary Symmetrical Neural Networks [0.0]
本稿では、反応衝突回避のための進化的ニューラルネットワークを用いた以前の研究を拡張した。
我々は、対称ニューラルネットワークと呼ばれる新しい手法を提案している。
この手法は,ネットワーク重み間の制約を強制することにより,モデルの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-29T13:02:14Z) - Robust Quadrupedal Locomotion on Sloped Terrains: A Linear Policy
Approach [3.752600874088677]
私たちは、四足歩行ロボットStochに2ドル(約2万2000円)のリニアポリシーを使っています。
特に、エンドフット軌道のパラメータは、胴体方向と地形傾斜を入力として取る線形フィードバックポリシーによって形成される。
結果として生じる歩行は、地形の斜面の変動や外部のプッシュに対して堅牢である。
論文 参考訳(メタデータ) (2020-10-30T16:02:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。