論文の概要: Integrated Encoding and Quantization to Enhance Quanvolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2410.05777v1
- Date: Tue, 8 Oct 2024 07:57:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 12:59:37.038846
- Title: Integrated Encoding and Quantization to Enhance Quanvolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークのエンコーディングと量子化
- Authors: Daniele Lizzio Bosco, Beatrice Portelli, Giuseppe Serra,
- Abstract要約: 準進化モデルの効率性を高めるための2つの方法を提案する。
まず,任意の符号化手法に適用可能なメモ化を用いたフレキシブルなデータ量子化手法を提案する。
第2に、単一回路における符号化と処理のステップを組み合わせた、新たな統合符号化戦略を導入する。
- 参考スコア(独自算出の注目度): 2.789685107745028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image processing is one of the most promising applications for quantum machine learning (QML). Quanvolutional Neural Networks with non-trainable parameters are the preferred solution to run on current and near future quantum devices. The typical input preprocessing pipeline for quanvolutional layers comprises of four steps: optional input binary quantization, encoding classical data into quantum states, processing the data to obtain the final quantum states, decoding quantum states back to classical outputs. In this paper we propose two ways to enhance the efficiency of quanvolutional models. First, we propose a flexible data quantization approach with memoization, applicable to any encoding method. This allows us to increase the number of quantization levels to retain more information or lower them to reduce the amount of circuit executions. Second, we introduce a new integrated encoding strategy, which combines the encoding and processing steps in a single circuit. This method allows great flexibility on several architectural parameters (e.g., number of qubits, filter size, and circuit depth) making them adjustable to quantum hardware requirements. We compare our proposed integrated model with a classical convolutional neural network and the well-known rotational encoding method, on two different classification tasks. The results demonstrate that our proposed model encoding exhibits a comparable or superior performance to the other models while requiring fewer quantum resources.
- Abstract(参考訳): 画像処理は量子機械学習(QML)の最も有望な応用の1つである。
トレーニング不可能なパラメータを持つ準進化型ニューラルネットワークは、現在および近未来の量子デバイスで実行するのに好まれるソリューションである。
準進化的レイヤのための典型的な入力前処理パイプラインは、4つのステップから構成される: 任意の入力バイナリ量子化、古典的なデータを量子状態に符号化し、最終的な量子状態を得るためにデータを処理し、量子状態を古典的な出力に復号する。
本稿では,クオン進化モデルの効率を高めるための2つの方法を提案する。
まず,任意の符号化手法に適用可能なメモ化を用いたフレキシブルなデータ量子化手法を提案する。
これにより、量子化レベルの数を増やして、より多くの情報を保持したり、回路の実行量を減らすことができます。
第2に、単一回路における符号化と処理のステップを組み合わせた、新たな統合符号化戦略を導入する。
この手法は、いくつかのアーキテクチャパラメータ(例えば、量子ビット数、フィルタサイズ、回路深さ)において、高い柔軟性を実現し、量子ハードウェアの要求に応じて調整できる。
提案した統合モデルと古典的畳み込みニューラルネットワークとよく知られた回転符号化法を比較した。
その結果,提案するモデル符号化は,量子資源の削減を図りながら,他のモデルと同等あるいは優れた性能を示すことを示した。
関連論文リスト
- Enhancing the performance of Variational Quantum Classifiers with hybrid autoencoders [0.0]
本稿では,特定の量子埋め込みを考慮し,与えられたデータセットの次元性を低減する方法を提案する。
この方法は、VQCを用いた量子機械学習をより汎用的で高次元のデータセットに効果的にすることを目的としている。
論文 参考訳(メタデータ) (2024-09-05T08:51:20Z) - Empirical Power of Quantum Encoding Methods for Binary Classification [0.2118773996967412]
我々は、様々な機械学習メトリクスに対する符号化スキームとその効果に焦点を当てる。
具体的には、実世界の複数のデータセットの量子符号化戦略の違いを示すために、実世界のデータ符号化に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-23T14:34:57Z) - Quantum Sparse Coding and Decoding Based on Quantum Network [1.0683439960798695]
スパース符号化と復号化アルゴリズムを実現するための対称量子ニューラルネットワークを提案する。
我々のネットワークは、光回路に自然に適合する多層2レベルユニタリ変換で構成されている。
我々は、古典的問題におけるバイナリとグレースケールの画像の疎符号化と復号化を実現し、量子問題における複雑な量子状態の復号化を実現した。
論文 参考訳(メタデータ) (2024-06-10T04:21:27Z) - Understanding the effects of data encoding on quantum-classical convolutional neural networks [0.0]
量子化法の主要な構成要素は、古典的なデータを量子状態に埋め込むために使用されるデータ符号化戦略である。
本研究では、2つの医用画像データセット上での量子古典的畳み込みニューラルネットワーク(QCCNN)の性能に与える影響について検討する。
論文 参考訳(メタデータ) (2024-05-05T18:44:08Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
本稿では,量子畳み込みニューラルネットワークに基づく量子機械学習手法を提案する。
提案手法を用いて,MNISTデータセットの4クラス分類を,データエンコーディングの8つのキュービットと4つのアクニラキュービットを用いて実証する。
この結果から,学習可能なパラメータの数に匹敵する古典的畳み込みニューラルネットワークによる解の精度が示された。
論文 参考訳(メタデータ) (2022-03-29T09:07:18Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Optimal Gradient Quantization Condition for Communication-Efficient
Distributed Training [99.42912552638168]
勾配の通信は、コンピュータビジョンアプリケーションで複数のデバイスでディープニューラルネットワークをトレーニングするのに費用がかかる。
本研究は,textbfANY勾配分布に対する二値および多値勾配量子化の最適条件を導出する。
最適条件に基づいて, 偏差BinGradと非偏差ORQの2値勾配量子化と多値勾配量子化の2つの新しい量子化手法を開発した。
論文 参考訳(メタデータ) (2020-02-25T18:28:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。