論文の概要: Understanding the effects of data encoding on quantum-classical convolutional neural networks
- arxiv url: http://arxiv.org/abs/2405.03027v1
- Date: Sun, 5 May 2024 18:44:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 15:24:13.346678
- Title: Understanding the effects of data encoding on quantum-classical convolutional neural networks
- Title(参考訳): 量子古典的畳み込みニューラルネットワークにおけるデータ符号化の効果の理解
- Authors: Maureen Monnet, Nermine Chaabani, Theodora-Augustina Dragan, Balthasar Schachtner, Jeanette Miriam Lorenz,
- Abstract要約: 量子化法の主要な構成要素は、古典的なデータを量子状態に埋め込むために使用されるデータ符号化戦略である。
本研究では、2つの医用画像データセット上での量子古典的畳み込みニューラルネットワーク(QCCNN)の性能に与える影響について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning was recently applied to various applications and leads to results that are comparable or, in certain instances, superior to classical methods, in particular when few training data is available. These results warrant a more in-depth examination of when and why improvements can be observed. A key component of quantum-enhanced methods is the data encoding strategy used to embed the classical data into quantum states. However, a clear consensus on the selection of a fitting encoding strategy given a specific use-case has not yet been reached. This work investigates how the data encoding impacts the performance of a quantum-classical convolutional neural network (QCCNN) on two medical imaging datasets. In the pursuit of understanding why one encoding method outperforms another, two directions are explored. Potential correlations between the performance of the quantum-classical architecture and various quantum metrics are first examined. Next, the Fourier series decomposition of the quantum circuits is analyzed, as variational quantum circuits generate Fourier-type sums. We find that while quantum metrics offer limited insights into this problem, the Fourier coefficients analysis appears to provide better clues to understand the effects of data encoding on QCCNNs.
- Abstract(参考訳): 量子機械学習は、最近様々なアプリケーションに適用され、古典的手法に匹敵する結果をもたらす。
これらの結果は、いつ、なぜ改善が観察できるのか、より詳細な調査を保証します。
量子化法の主要な構成要素は、古典的なデータを量子状態に埋め込むために使用されるデータ符号化戦略である。
しかし、特定のユースケースが与えられたフィッティング符号化戦略の選択に関する明確なコンセンサスはまだ得られていない。
本研究では、2つの医用画像データセット上での量子古典的畳み込みニューラルネットワーク(QCCNN)の性能に与える影響について検討する。
1つの符号化法が他の符号化法より優れている理由を理解するために、2つの方向を探索する。
量子古典的アーキテクチャの性能と様々な量子メトリクスとの潜在的な相関について検討した。
次に、変分量子回路がフーリエ型和を生成するため、量子回路のフーリエ級分解を分析する。
量子メトリクスはこの問題に関して限られた洞察を与えるが、フーリエ係数解析はQCCNNにおけるデータエンコーディングの効果を理解するためのより良い手がかりを提供するように見える。
関連論文リスト
- Comparing Quantum Encoding Techniques [0.0]
本研究では、特にハイブリッド量子古典機械学習の文脈における符号化手法について検討する。
本研究は,QuClassi量子ニューラルネットワークアーキテクチャを用いて,MNISTデータセットから3'および6'桁のバイナリ分類を行い,精度,エントロピー,損失,ノイズ耐性などの指標を得る。
論文 参考訳(メタデータ) (2024-10-11T00:14:31Z) - Empirical Power of Quantum Encoding Methods for Binary Classification [0.2118773996967412]
我々は、様々な機械学習メトリクスに対する符号化スキームとその効果に焦点を当てる。
具体的には、実世界の複数のデータセットの量子符号化戦略の違いを示すために、実世界のデータ符号化に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-23T14:34:57Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Variational data encoding and correlations in quantum-enhanced machine
learning [2.436161840735876]
我々は,古典的データを量子状態に変換するための効果的な符号化プロトコルを開発した。
また、量子加速を妨げる必然的なノイズに対処する必要性にも対処する。
機械学習から学習の概念を適用することで、学習可能なプロセスを符号化するデータを描画する。
論文 参考訳(メタデータ) (2023-12-13T07:55:57Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Concentration of Data Encoding in Parameterized Quantum Circuits [7.534037755267707]
変分量子アルゴリズムは、有意義なタスクにおいて、短期的な量子アドバンテージを実現するための主要な戦略として認識されている。
本稿では、パラメータ化量子回路に基づく共通データ符号化戦略を考察し、進展する。
妥当な仮定の下では、平均符号化状態と最大混合状態の間の距離が明らかに上界であることが証明できる。
論文 参考訳(メタデータ) (2022-06-16T16:09:40Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
本資料は、ハイブリッド量子古典ニューラルネットワークのトレーニングと性能に関する実験結果を含む。
シミュレーションは時間を要するが、量子ネットワークは時間を要するが、古典的なネットワークを克服する。
論文 参考訳(メタデータ) (2021-08-19T18:49:30Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。