A Zero-Shot approach to the Conversational Tree Search Task
- URL: http://arxiv.org/abs/2410.05821v1
- Date: Tue, 8 Oct 2024 08:51:44 GMT
- Title: A Zero-Shot approach to the Conversational Tree Search Task
- Authors: Dirk Väth, Ngoc Thang Vu,
- Abstract summary: Conversational Tree Search (CTS) provides a graph-based framework for controllable task-oriented dialog in sensitive domains.
The goal of this paper is to eliminate the need for training CTS agents altogether.
We show that zero-shot, controllable CTS agents significantly outperform state-of-the-art CTS agents in simulation.
- Score: 28.392036110582723
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In sensitive domains, such as legal or medial domains, the correctness of information given to users is critical. To address this, the recently introduced task Conversational Tree Search (CTS) provides a graph-based framework for controllable task-oriented dialog in sensitive domains. However, a big drawback of state-of-the-art CTS agents is their long training time, which is especially problematic as a new agent must be trained every time the associated domain graph is updated. The goal of this paper is to eliminate the need for training CTS agents altogether. To achieve this, we implement a novel LLM-based method for zero-shot, controllable CTS agents. We show that these agents significantly outperform state-of-the-art CTS agents (p<0.0001; Barnard Exact test) in simulation. This generalizes to all available CTS domains. Finally, we perform user evaluation to test the agent performance in the wild, showing that our policy significantly (p<0.05; Barnard Exact) improves task-success compared to the state-of-the-art Reinforcement Learning-based CTS agent.
Related papers
- SWE-Search: Enhancing Software Agents with Monte Carlo Tree Search and Iterative Refinement [18.84439000902905]
SWE-Search is a multi-agent framework that integrates Monte Carlo Tree Search (MCTS) with a self-improvement mechanism to enhance software agents' performance.
This work highlights the potential of self-evaluation driven search techniques to enhance agent reasoning and planning in complex, dynamic software engineering environments.
arXiv Detail & Related papers (2024-10-26T22:45:56Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
We introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems.
This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
We present DevAI, a new benchmark of 55 realistic automated AI development tasks.
arXiv Detail & Related papers (2024-10-14T17:57:02Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
We present DS-Agent, a novel framework that harnesses large language models (LLMs) agent and case-based reasoning (CBR)
In the development stage, DS-Agent follows the CBR framework to structure an automatic iteration pipeline, which can flexibly capitalize on the expert knowledge from Kaggle.
In the deployment stage, DS-Agent implements a low-resource deployment stage with a simplified CBR paradigm, significantly reducing the demand on foundational capabilities of LLMs.
arXiv Detail & Related papers (2024-02-27T12:26:07Z) - Credit-cognisant reinforcement learning for multi-agent cooperation [0.0]
We introduce the concept of credit-cognisant rewards, which allows an agent to perceive the effect its actions had on the environment as well as on its co-agents.
We show that by manipulating these experiences and constructing the reward contained within them to include the rewards received by all the agents within the same action sequence, we are able to improve significantly on the performance of independent deep Q-learning.
arXiv Detail & Related papers (2022-11-18T09:00:25Z) - TASAC: a twin-actor reinforcement learning framework with stochastic
policy for batch process control [1.101002667958165]
Reinforcement Learning (RL) wherein an agent learns the policy by directly interacting with the environment, offers a potential alternative in this context.
RL frameworks with actor-critic architecture have recently become popular for controlling systems where state and action spaces are continuous.
It has been shown that an ensemble of actor and critic networks further helps the agent learn better policies due to the enhanced exploration due to simultaneous policy learning.
arXiv Detail & Related papers (2022-04-22T13:00:51Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - RethinkCWS: Is Chinese Word Segmentation a Solved Task? [81.11161697133095]
The performance of the Chinese Word (CWS) systems has gradually reached a plateau with the rapid development of deep neural networks.
In this paper, we take stock of what we have achieved and rethink what's left in the CWS task.
arXiv Detail & Related papers (2020-11-13T11:07:08Z) - Predictive Information Accelerates Learning in RL [50.52439807008805]
We train Soft Actor-Critic (SAC) agents from pixels with an auxiliary task that learns a compressed representation of the predictive information of the RL environment dynamics.
We show that PI-SAC agents can substantially improve sample efficiency over challenging baselines on tasks from the DM Control suite of continuous control environments.
arXiv Detail & Related papers (2020-07-24T08:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.