論文の概要: Posets and Bounded Probabilities for Discovering Order-inducing Features in Event Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2410.06065v1
- Date: Tue, 8 Oct 2024 14:12:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 11:20:35.643453
- Title: Posets and Bounded Probabilities for Discovering Order-inducing Features in Event Knowledge Graphs
- Title(参考訳): イベント知識グラフにおける順序付き特徴の発見のためのポセットと境界確率
- Authors: Christoffer Olling Back, Jakob Grue Simonsen,
- Abstract要約: イベント知識グラフ(EKG)は、プロセス実行の複数の対話的なビューをキャプチャする。
未処理データからのEKG発見のオープンな問題に対処する。
統計的推測に基づくEKG探索アルゴリズムを導出する。
- 参考スコア(独自算出の注目度): 6.96958458974878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event knowledge graphs (EKG) extend the classical notion of a trace to capture multiple, interacting views of a process execution. In this paper, we tackle the open problem of automating EKG discovery from uncurated data through a principled, probabilistic framing based on the outcome space resulting from featured-derived partial orders on events. From this, we derive an EKG discovery algorithm based upon statistical inference rather than an ad-hoc or heuristic-based strategy, or relying on manual analysis from domain experts. This approach comes at the computational cost of exploring a large, non-convex hypothesis space. In particular, solving the maximum likelihood term involves counting the number of linear extensions of posets, which in general is #P-complete. Fortunately, bound estimates suffice for model comparison, and admit incorporation into a bespoke branch-and-bound algorithm. We show that the posterior probability as defined is antitonic w.r.t. search depth for branching rules that are monotonic w.r.t. model inclusion. This allows pruning of large portions of the search space, which we show experimentally leads to rapid convergence toward optimal solutions that are consistent with manually built EKGs.
- Abstract(参考訳): イベント知識グラフ(EKG)は、トレースの古典的な概念を拡張して、プロセス実行の複数の対話的なビューをキャプチャする。
本稿では,イベントにおける特徴的部分順序から得られる結果空間に基づいて,未処理データからのEKG発見を自動化するというオープンな課題に対処する。
そこで我々は,アドホックな戦略やヒューリスティックな戦略ではなく,統計的推測に基づくEKG発見アルゴリズムを導出した。
このアプローチは、大規模な非凸仮説空間を探索する計算コストが伴う。
特に、最大極大項の解法は、一般に#P完全である列の線型拡大の数を数えることを含む。
幸いなことに、バウンド推定はモデルの比較に十分であり、分岐とバウンドのアルゴリズムに組み込むことができる。
定義した後続確率は、単調w.r.t.モデル包含である分岐規則に対する反音速w.r.t.探索深さであることを示す。
これにより、探索空間の大部分を刈り取ることができ、実験により手動で構築されたEKGと整合した最適解への急速な収束が示される。
関連論文リスト
- pEBR: A Probabilistic Approach to Embedding Based Retrieval [4.8338111302871525]
埋め込み検索は、クエリとアイテムの両方の共有セマンティック表現空間を学習することを目的としている。
現在の産業実践では、検索システムは典型的には、異なるクエリに対して一定数のアイテムを検索する。
論文 参考訳(メタデータ) (2024-10-25T07:14:12Z) - Data-Driven Abstractions via Binary-Tree Gaussian Processes for Formal Verification [0.22499166814992438]
ガウス過程(GP)回帰に基づく抽象的解は、量子化された誤差を持つデータから潜在システムの表現を学習する能力で人気を博している。
二分木ガウス過程(BTGP)により未知系のマルコフ連鎖モデルを構築することができることを示す。
BTGPの関数空間に真の力学が存在しない場合でも、統一公式による非局在誤差量子化を提供する。
論文 参考訳(メタデータ) (2024-07-15T11:49:44Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
不完全な観測データから因果発見を行うため,MissDAGと呼ばれる一般的な手法を開発した。
MissDAGは、期待-最大化の枠組みの下で観測の可視部分の期待される可能性を最大化する。
各種因果探索アルゴリズムを組み込んだMissDAGの柔軟性について,広範囲なシミュレーションと実データ実験により検証した。
論文 参考訳(メタデータ) (2022-05-27T09:59:46Z) - Multi-task Learning of Order-Consistent Causal Graphs [59.9575145128345]
我々は、$K関連ガウス非巡回グラフ(DAG)の発見問題を考える。
マルチタスク学習環境下では, 線形構造方程式モデルを学習するためのMLE ($l_1/l$-regularized maximum chance estimator) を提案する。
理論的には、関係するタスクにまたがるデータを活用することで、因果順序を復元する際のサンプルの複雑さをより高めることができることを示す。
論文 参考訳(メタデータ) (2021-11-03T22:10:18Z) - Probabilistic Entity Representation Model for Chain Reasoning over
Knowledge Graphs [18.92547855877845]
本稿では,知識グラフ上の論理的推論のための確率的エンティティ表現モデル(PERM)を提案する。
PERMは、エンティティを平均と共分散パラメータで多変量ガウス密度としてエンコードし、意味的位置と滑らかな決定境界をキャプチャする。
われわれは, PERMの薬剤再精製事例研究における能力を示すとともに, 提案された研究が, 現行の方法よりもはるかに優れたF1薬剤を推奨できることを実証した。
論文 参考訳(メタデータ) (2021-10-26T09:26:10Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
観測データと実験データの任意の組み合わせから最適境界を近似する有効なモンテカルロアルゴリズムを開発した。
我々のアルゴリズムは、合成および実世界のデータセットに基づいて広範囲に検証されている。
論文 参考訳(メタデータ) (2021-10-12T02:21:30Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
複合イベント認識(CER)システムは、イベントのリアルタイムストリーム上のパターンを"即時"検出する能力によって、過去20年間に人気が高まっている。
このような現象が実際にCERエンジンによって検出される前に、パターンがいつ発生するかを予測する方法が不足している。
複雑なイベント予測の問題に対処しようとする形式的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-01T09:52:31Z) - Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper [7.570246812206772]
観測データからの因果発見は、科学の多くの分野において重要なツールである。
大規模なサンプルリミットでは、音と完全な因果探索アルゴリズムが導入されている。
しかし、これらのアルゴリズムが使用する統計的テストのパワーを制限するのは、有限のトレーニングデータのみである。
論文 参考訳(メタデータ) (2021-07-11T09:24:49Z) - Probabilistic DAG Search [29.47649645431227]
探索空間の潜伏構造を利用して探索木間で情報を共有するための確率的フレームワークを開発する。
我々は、Tic-Tac-Toeの既存の非確率的代替品と特徴選択アプリケーションとを比較検討するアルゴリズムを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-16T11:35:19Z) - A Robust Functional EM Algorithm for Incomplete Panel Count Data [66.07942227228014]
完全無作為な仮定(MCAR)の下での数え上げ過程の平均関数を推定する機能的EMアルゴリズムを提案する。
提案アルゴリズムは、いくつかの一般的なパネル数推定手法をラップし、不完全数にシームレスに対処し、ポアソン過程の仮定の誤特定に頑健である。
本稿では, 数値実験による提案アルゴリズムの有用性と喫煙停止データの解析について述べる。
論文 参考訳(メタデータ) (2020-03-02T20:04:38Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。