論文の概要: Zero-Shot Learning of Causal Models
- arxiv url: http://arxiv.org/abs/2410.06128v1
- Date: Tue, 8 Oct 2024 15:31:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 11:00:50.267844
- Title: Zero-Shot Learning of Causal Models
- Title(参考訳): 因果モデルのゼロショット学習
- Authors: Divyat Mahajan, Jannes Gladrow, Agrin Hilmkil, Cheng Zhang, Meyer Scetbon,
- Abstract要約: 我々は、データセットの因果生成過程をゼロショットで推測できるエンフィングルモデルを学習する。
我々は,本モデルが生成する真のSCMをゼロショットで予測し,その副生成物として,(i)新たなデータセットサンプルを生成し,(ii)介入したサンプルを推定できることを示す。
- 参考スコア(独自算出の注目度): 17.427722515310606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing acquisition of datasets over time, we now have access to precise and varied descriptions of the world, capturing all sorts of phenomena. These datasets can be seen as empirical observations of unknown causal generative processes, which can commonly be described by Structural Causal Models (SCMs). Recovering these causal generative processes from observations poses formidable challenges, and often require to learn a specific generative model for each dataset. In this work, we propose to learn a \emph{single} model capable of inferring in a zero-shot manner the causal generative processes of datasets. Rather than learning a specific SCM for each dataset, we enable the Fixed-Point Approach (FiP) proposed in~\cite{scetbon2024fip}, to infer the generative SCMs conditionally on their empirical representations. More specifically, we propose to amortize the learning of a conditional version of FiP to infer generative SCMs from observations and causal structures on synthetically generated datasets. We show that our model is capable of predicting in zero-shot the true generative SCMs, and as a by-product, of (i) generating new dataset samples, and (ii) inferring intervened ones. Our experiments demonstrate that our amortized procedure achieves performances on par with SoTA methods trained specifically for each dataset on both in and out-of-distribution problems. To the best of our knowledge, this is the first time that SCMs are inferred in a zero-shot manner from observations, paving the way for a paradigmatic shift towards the assimilation of causal knowledge across datasets.
- Abstract(参考訳): 時間が経つにつれてデータセットの取得が増加し、私たちは世界の精密で多様な記述にアクセスでき、あらゆる種類の現象を捉えています。
これらのデータセットは未知の因果生成過程の実験的観察と見なすことができ、一般に構造因果モデル(Structure Causal Models, SCMs)によって記述される。
これらの因果生成過程を観測から回収することは、深刻な課題となり、しばしばデータセットごとに特定の生成モデルを学ぶ必要がある。
本研究では,データセットの因果生成過程をゼロショットで推論できるemph{single}モデルを学習することを提案する。
各データセットに対して特定のSCMを学習するのではなく、~\cite{scetbon2024fip} で提案された固定点アプローチ(FiP)を有効にすることで、生成したSCMを経験的表現に基づいて条件付きで推測する。
より具体的には、合成データセット上での観測と因果構造から生成SCMを推定するために、FiPの条件付きバージョンを学ぶことを提案する。
我々のモデルは、真の生成的SCMをゼロショットで予測し、副産物として予測できることを示します。
(i)新しいデータセットのサンプルを生成し、
(二)介在するものを推定すること。
本実験は,各データセットに特化して訓練されたSoTA法と同等の性能を,内分布問題と外分布問題の両方で達成できることを実証する。
私たちの知る限りでは、SCMが観測からゼロショットで推論され、データセット間の因果知識の同化に向けたパラダイムシフトの道を開くのは、これが初めてです。
関連論文リスト
- DISCO: DISCovering Overfittings as Causal Rules for Text Classification Models [6.369258625916601]
ポストホックの解釈可能性法は、モデルの意思決定プロセスを完全に捉えるのに失敗する。
本稿では,グローバルなルールベースの説明を見つけるための新しい手法であるdisCOを紹介する。
DISCOは対話的な説明をサポートし、人間の検査者がルールベースの出力で突発的な原因を区別できるようにする。
論文 参考訳(メタデータ) (2024-11-07T12:12:44Z) - Continual Learning for Multimodal Data Fusion of a Soft Gripper [1.0589208420411014]
あるデータモダリティに基づいてトレーニングされたモデルは、異なるモダリティでテストした場合、しばしば失敗する。
異なるデータモダリティを漸進的に学習できる連続学習アルゴリズムを提案する。
我々は、アルゴリズムの有効性を、挑戦的なカスタムマルチモーダルデータセット上で評価する。
論文 参考訳(メタデータ) (2024-09-20T09:53:27Z) - A Fixed-Point Approach for Causal Generative Modeling [20.88890689294816]
本稿では,構造因果モデル(Structure Causal Models, SCM)を因果順序付き変数の固定点問題として記述する新しい形式論を提案する。
トポロジカル順序付け(TO)を考えると,その特異な回復のために最も弱い既知の条件を確立する。
論文 参考訳(メタデータ) (2024-04-10T12:29:05Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
本研究では、独自の学習データセットに加えて、生成したコンテンツをフィードバックする生成モデルの学習ダイナミクスについて検討する。
各イテレーションで十分な量の外部データが導入されない限り、非自明な温度がモデルを退化させることを示す。
論文 参考訳(メタデータ) (2024-04-02T21:51:39Z) - MADS: Modulated Auto-Decoding SIREN for time series imputation [9.673093148930874]
我々は,暗黙のニューラル表現に基づく時系列計算のための新しい自動デコードフレームワークMADSを提案する。
実世界の2つのデータセット上で本モデルを評価し,時系列計算における最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-03T09:08:47Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - MRCLens: an MRC Dataset Bias Detection Toolkit [82.44296974850639]
MRCLensは,ユーザがフルモデルをトレーニングする前に,バイアスが存在するかどうかを検出するツールキットである。
ツールキットの導入の便宜のために,MDCにおける共通バイアスの分類も提供する。
論文 参考訳(メタデータ) (2022-07-18T21:05:39Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
機械学習の完全確率的(または生成的)モデルに基づく継続的学習のアプローチを提案する。
生成器と分類器の両方に対してガウス混合モデル(GMM)インスタンスを用いた擬似リハーサル手法を提案する。
我々は,GMRが,クラス増分学習問題に対して,非常に競合的な時間とメモリの複雑さで,最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2021-04-19T12:26:26Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
本稿では,2組の深層ReLUネットワークを用いたコントラスト型自己教師学習(SSL)手法を理解するための新しい枠組みを提案する。
種々の損失関数を持つSimCLRの各SGD更新において、各層の重みは共分散演算子によって更新されることを示す。
共分散演算子の役割と、そのようなプロセスでどのような特徴が学習されるかをさらに研究するために、我々は、階層的潜在木モデル(HLTM)を用いて、データ生成および増大過程をモデル化する。
論文 参考訳(メタデータ) (2020-10-01T17:51:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。