論文の概要: AgentSquare: Automatic LLM Agent Search in Modular Design Space
- arxiv url: http://arxiv.org/abs/2410.06153v2
- Date: Mon, 18 Nov 2024 17:25:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:29:44.446657
- Title: AgentSquare: Automatic LLM Agent Search in Modular Design Space
- Title(参考訳): AgentSquare: モジュールデザイン空間におけるLLMエージェントの自動検索
- Authors: Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, Yong Li,
- Abstract要約: 大規模言語モデル(LLM)は、幅広い複雑なタスクを処理できるエージェントシステムの急速な成長をもたらした。
Modularized LLM Agent Search (MoLAS) という新しい研究課題を紹介した。
- 参考スコア(独自算出の注目度): 16.659969168343082
- License:
- Abstract: Recent advancements in Large Language Models (LLMs) have led to a rapid growth of agentic systems capable of handling a wide range of complex tasks. However, current research largely relies on manual, task-specific design, limiting their adaptability to novel tasks. In this paper, we introduce a new research problem: Modularized LLM Agent Search (MoLAS). We propose a modular design space that abstracts existing LLM agent designs into four fundamental modules with uniform IO interface: Planning, Reasoning, Tool Use, and Memory. Building on this design space, we present a novel LLM agent search framework called AgentSquare, which introduces two core mechanisms, i.e., module evolution and recombination, to efficiently search for optimized LLM agents. To further accelerate the process, we design a performance predictor that uses in-context surrogate models to skip unpromising agent designs. Extensive experiments across six benchmarks, covering the diverse scenarios of web, embodied, tool use and game applications, show that AgentSquare substantially outperforms hand-crafted agents, achieving an average performance gain of 17.2% against best-known human designs. Moreover, AgentSquare can generate interpretable design insights, enabling a deeper understanding of agentic architecture and its impact on task performance. We believe that the modular design space and AgentSquare search framework offer a platform for fully exploiting the potential of prior successful designs and consolidating the collective efforts of research community. Code repo is available at https://github.com/tsinghua-fib-lab/AgentSquare.
- Abstract(参考訳): 近年のLarge Language Models (LLMs) の進歩は,幅広い複雑なタスクを処理できるエージェントシステムの急速な成長につながっている。
しかしながら、現在の研究は主に手動のタスク固有の設計に依存しており、新しいタスクへの適応性に制限されている。
本稿では,新しい研究課題であるModularized LLM Agent Search (MoLAS)を紹介する。
本稿では,既存のLLMエージェント設計を,均一なIOインターフェースを持つ4つの基本モジュール(プランニング,リ推論,ツール利用,メモリ)に抽象化するモジュール設計空間を提案する。
この設計空間を基盤として,モジュールの進化と再結合という2つのコア機構を導入し,最適化されたLLMエージェントを効率的に検索する,AgentSquareという新しいLLMエージェント検索フレームワークを提案する。
プロセスをさらに高速化するために,テキスト内代理モデルを用いてエージェント設計をスキップする性能予測器を設計する。
6つのベンチマークにわたる大規模な実験は、Web、具体化、ツールの使用、ゲームアプリケーションの様々なシナリオをカバーし、エージェントSquareが手作りのエージェントを大幅に上回り、よく知られた人間のデザインに対して平均17.2%のパフォーマンス向上を達成したことを示している。
さらに、AgentSquareは解釈可能な設計の洞察を生成し、エージェントアーキテクチャの深い理解とタスクパフォーマンスへの影響を可能にする。
我々は,モジュール型デザイン空間とエージェントSquare検索フレームワークが,先行して成功したデザインの可能性を完全に活用し,研究コミュニティの総合的な取り組みを統合するためのプラットフォームを提供すると考えている。
Code repoはhttps://github.com/tsinghua-fib-lab/AgentSquareで入手できる。
関連論文リスト
- APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents [8.479128275067742]
本稿では,自律型エージェントによるMinecraftの複雑な構造構築を可能にする,LLM(Large Language Model)駆動のフレームワークを提案する。
連鎖分解とマルチモーダル入力を用いることで、このフレームワークは詳細なアーキテクチャレイアウトと青写真を生成する。
本エージェントは, メモリとリフレクションモジュールの両方を組み込んで, 生涯学習, 適応的洗練, エラー訂正を容易にする。
論文 参考訳(メタデータ) (2024-11-26T09:31:28Z) - GUI Agents with Foundation Models: A Comprehensive Survey [52.991688542729385]
この調査は(M)LLMベースのGUIエージェントに関する最近の研究を集約する。
データ、フレームワーク、アプリケーションにおける重要なイノベーションを強調します。
本稿では, (M)LLM ベースの GUI エージェントの分野におけるさらなる発展を期待する。
論文 参考訳(メタデータ) (2024-11-07T17:28:10Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
LLM-Agent-UMF(LLM-Agent-UMF)に基づく新しいエージェント統一モデリングフレームワークを提案する。
我々のフレームワークはLLMエージェントの異なるコンポーネントを区別し、LLMとツールを新しい要素であるコアエージェントから分離する。
我々は,13の最先端エージェントに適用し,それらの機能との整合性を実証することによって,我々の枠組みを評価する。
論文 参考訳(メタデータ) (2024-09-17T17:54:17Z) - VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents [50.12414817737912]
大規模マルチモーダルモデル(LMM)は、人工知能の新たな時代を迎え、言語と視覚の融合によって、高い能力を持つVisual Foundation Agentを形成する。
既存のベンチマークでは、複雑な実世界の環境でのLMMの可能性を十分に証明できない。
VisualAgentBench (VAB) は、視覚基礎エージェントとしてLMMを訓練し評価するための先駆的なベンチマークである。
論文 参考訳(メタデータ) (2024-08-12T17:44:17Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
LLMエージェントの研究を簡略化する新しいAIエージェントライブラリであるAgentLiteをオープンソースとして公開する。
AgentLiteは、タスクを分解するエージェントの機能を強化するために設計されたタスク指向フレームワークである。
我々は,その利便性と柔軟性を示すために,AgentLiteで開発された実用アプリケーションを紹介した。
論文 参考訳(メタデータ) (2024-02-23T06:25:20Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - Formally Specifying the High-Level Behavior of LLM-Based Agents [24.645319505305316]
LLMはタスク固有の微調整モデルを必要とせずに、課題を解決するための有望なツールとして登場した。
現在、このようなエージェントの設計と実装はアドホックであり、LLMベースのエージェントが自然に適用できる様々なタスクは、エージェント設計に一律に適合するアプローチが存在しないことを意味する。
エージェント構築のプロセスを簡単にする最小主義的生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-12T17:24:15Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。