論文の概要: A mechanistically interpretable neural network for regulatory genomics
- arxiv url: http://arxiv.org/abs/2410.06211v1
- Date: Tue, 8 Oct 2024 17:15:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 10:31:16.332386
- Title: A mechanistically interpretable neural network for regulatory genomics
- Title(参考訳): 制御ゲノミクスのための機械的解釈型ニューラルネットワーク
- Authors: Alex M. Tseng, Gokcen Eraslan, Tommaso Biancalani, Gabriele Scalia,
- Abstract要約: このアーキテクチャはde novoモチーフの発見とモチーフのインスタンス呼び出しに優れており、可変シーケンスコンテキストに対して堅牢であり、新しい関数シーケンスを完全解釈可能な生成を可能にする。
- 参考スコア(独自算出の注目度): 0.6224769485481241
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deep neural networks excel in mapping genomic DNA sequences to associated readouts (e.g., protein-DNA binding). Beyond prediction, the goal of these networks is to reveal to scientists the underlying motifs (and their syntax) which drive genome regulation. Traditional methods that extract motifs from convolutional filters suffer from the uninterpretable dispersion of information across filters and layers. Other methods which rely on importance scores can be unstable and unreliable. Instead, we designed a novel mechanistically interpretable architecture for regulatory genomics, where motifs and their syntax are directly encoded and readable from the learned weights and activations. We provide theoretical and empirical evidence of our architecture's full expressivity, while still being highly interpretable. Through several experiments, we show that our architecture excels in de novo motif discovery and motif instance calling, is robust to variable sequence contexts, and enables fully interpretable generation of novel functional sequences.
- Abstract(参考訳): ディープニューラルネットワークはゲノムDNA配列を関連するレディングアウト(タンパク質-DNA結合など)にマッピングする上で優れている。
予測以外にも、これらのネットワークの目標は、ゲノム制御を促進する基礎となるモチーフ(とその構文)を明らかにすることである。
畳み込みフィルタからモチーフを抽出する伝統的な方法は、フィルタや層にまたがる情報の解釈不能な分散に悩まされる。
重要なスコアに依存する他の方法は不安定で信頼できない。
代わりに、我々は規制ゲノミクスのための機械的に解釈可能な新しいアーキテクチャを設計し、そこではモチーフとその構文を直接エンコードし、学習した重みとアクティベーションから読み取ることができる。
我々は、アーキテクチャの完全な表現性に関する理論的かつ実証的な証拠を提供するが、それでも高い解釈が可能である。
いくつかの実験を通して、我々のアーキテクチャはde novoモチーフの発見とモチーフのインスタンス呼び出しに優れており、可変シーケンスコンテキストに対して堅牢であり、新しい関数シーケンスを完全に解釈可能な生成を可能にしていることを示す。
関連論文リスト
- Improving Neuron-level Interpretability with White-box Language Models [11.898535906016907]
我々は、CRATE(Coding RAte TransformEr)という、ホワイトボックストランスフォーマーのようなアーキテクチャを導入する。
包括的実験では、ニューロンレベルの解釈可能性において、顕著な改善(最大103%の相対的な改善)が見られた。
CRATEの解釈可能性の向上は、関連するトークンを一貫して一意に活性化する能力の強化によるものである。
論文 参考訳(メタデータ) (2024-10-21T19:12:33Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
ゲノム配列に基づいて訓練されたブラックボックス深層学習モデルは、異なる遺伝子制御機構の結果を予測するのに優れている。
本稿では、遺伝的プログラミングを用いて、その意味的多様性に寄与する配列の摂動を進化させることによりデータセットを生成することを提案する。
論文 参考訳(メタデータ) (2024-07-03T10:31:30Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - Semantic Loss Functions for Neuro-Symbolic Structured Prediction [74.18322585177832]
このような構造に関する知識を象徴的に定義した意味的損失をトレーニングに注入する。
記号の配置に非依存であり、それによって表現される意味論にのみ依存する。
識別型ニューラルモデルと生成型ニューラルモデルの両方と組み合わせることができる。
論文 参考訳(メタデータ) (2024-05-12T22:18:25Z) - Understanding polysemanticity in neural networks through coding theory [0.8702432681310401]
本稿では,ネットワークの解釈可能性に関する新たな実践的アプローチと,多意味性やコードの密度に関する理論的考察を提案する。
ランダムなプロジェクションによって、ネットワークがスムーズか非微分可能かが明らかになり、コードがどのように解釈されるかを示す。
我々のアプローチは、ニューラルネットワークにおける解釈可能性の追求を前進させ、その基盤となる構造についての洞察を与え、回路レベルの解釈可能性のための新たな道を提案する。
論文 参考訳(メタデータ) (2024-01-31T16:31:54Z) - On the Expressiveness and Generalization of Hypergraph Neural Networks [77.65788763444877]
この拡張抽象化はハイパーグラフニューラルネットワーク(HyperGNN)の表現性、学習、および(構造的)一般化を分析するためのフレームワークを記述する。
具体的には、HyperGNNが有限データセットからどのように学習し、任意の入力サイズのグラフ推論問題に構造的に一般化するかに焦点を当てる。
論文 参考訳(メタデータ) (2023-03-09T18:42:18Z) - Neural-Symbolic Recursive Machine for Systematic Generalization [113.22455566135757]
我々は、基底記号システム(GSS)のコアとなるニューラル・シンボリック再帰機械(NSR)を紹介する。
NSRは神経知覚、構文解析、意味推論を統合している。
我々はNSRの有効性を,系統的一般化能力の探索を目的とした4つの挑戦的ベンチマークで評価した。
論文 参考訳(メタデータ) (2022-10-04T13:27:38Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Convolutional Motif Kernel Networks [1.104960878651584]
我々のモデルは、小さなデータセットでしっかりと学習でき、関連する医療予測タスクで最先端のパフォーマンスを達成できることを示す。
提案手法はDNAおよびタンパク質配列に利用することができる。
論文 参考訳(メタデータ) (2021-11-03T15:06:09Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。