Skin Cancer Machine Learning Model Tone Bias
- URL: http://arxiv.org/abs/2410.06385v1
- Date: Tue, 8 Oct 2024 21:33:02 GMT
- Title: Skin Cancer Machine Learning Model Tone Bias
- Authors: James Pope, Md Hassanuzzaman, Mingmar Sherpa, Omar Emara, Ayush Joshi, Nirmala Adhikari,
- Abstract summary: Many open-source skin cancer image datasets are the result of clinical trials conducted in countries with lighter skin tones.
Due to this tone imbalance, machine learning models can perform well at detecting skin cancer for lighter skin tones.
Any tone bias in these models could introduce fairness concerns and reduce public trust in the artificial intelligence health field.
- Score: 1.1545092788508224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Many open-source skin cancer image datasets are the result of clinical trials conducted in countries with lighter skin tones. Due to this tone imbalance, machine learning models derived from these datasets can perform well at detecting skin cancer for lighter skin tones. Any tone bias in these models could introduce fairness concerns and reduce public trust in the artificial intelligence health field. Methods: We examine a subset of images from the International Skin Imaging Collaboration (ISIC) archive that provide tone information. The subset has a significant tone imbalance. These imbalances could explain a model's tone bias. To address this, we train models using the imbalanced dataset and a balanced dataset to compare against. The datasets are used to train a deep convolutional neural network model to classify the images as malignant or benign. We then evaluate the models' disparate impact, based on selection rate, relative to dark or light skin tone. Results: Using the imbalanced dataset, we found that the model is significantly better at detecting malignant images in lighter tone resulting in a disparate impact of 0.577. Using the balanced dataset, we found that the model is also significantly better at detecting malignant images in lighter versus darker tones with a disparate impact of 0.684. Using the imbalanced or balanced dataset to train the model still results in a disparate impact well below the standard threshold of 0.80 which suggests the model is biased with respect to skin tone. Conclusion: The results show that typical skin cancer machine learning models can be tone biased. These results provide evidence that diagnosis or tone imbalance is not the cause of the bias. Other techniques will be necessary to identify and address the bias in these models, an area of future investigation.
Related papers
- Are generative models fair? A study of racial bias in dermatological image generation [15.812312064457865]
We evaluate the fairness of generative models in clinical dermatology with respect to racial bias.
We utilize the Fitzpatrick17k dataset to examine how racial bias influences the representation and performance of these models.
arXiv Detail & Related papers (2025-01-20T21:24:15Z) - An analysis of data variation and bias in image-based dermatological datasets for machine learning classification [2.039829968340841]
In clinical dermatology, classification models can detect malignant lesions on patients' skin using only RGB images as input.
Most learning-based methods employ data acquired from dermoscopic datasets on training, which are large and validated by a gold standard.
This work aims to evaluate the gap between dermoscopic and clinical samples and understand how the dataset variations impact training.
arXiv Detail & Related papers (2025-01-15T17:18:46Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Evaluating Machine Learning-based Skin Cancer Diagnosis [0.0]
The research assesses two convolutional neural network architectures: a MobileNet-based model and a custom CNN model.
Both models are evaluated for their ability to classify skin lesions into seven categories and to distinguish between dangerous and benign lesions.
The study concludes that while the models show promise in explainability, further development is needed to ensure fairness across different skin tones.
arXiv Detail & Related papers (2024-09-04T02:44:48Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
We study the interaction between skin tone and color difference effects and suggest that color difference can be an additional reason behind model performance bias between skin tones.
Our work provides a complementary angle to dermatology AI for improving skin disease detection.
arXiv Detail & Related papers (2024-01-24T07:45:24Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Analyzing the Effects of Handling Data Imbalance on Learned Features
from Medical Images by Looking Into the Models [50.537859423741644]
Training a model on an imbalanced dataset can introduce unique challenges to the learning problem.
We look deeper into the internal units of neural networks to observe how handling data imbalance affects the learned features.
arXiv Detail & Related papers (2022-04-04T09:38:38Z) - Pseudo Bias-Balanced Learning for Debiased Chest X-ray Classification [57.53567756716656]
We study the problem of developing debiased chest X-ray diagnosis models without knowing exactly the bias labels.
We propose a novel algorithm, pseudo bias-balanced learning, which first captures and predicts per-sample bias labels.
Our proposed method achieved consistent improvements over other state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-18T11:02:18Z) - Analysis of skin lesion images with deep learning [0.0]
We evaluate the current state of the art in the classification of dermoscopic images.
Various deep neural network architectures pre-trained on the ImageNet data set are adapted to a combined training data set.
The performance and applicability of these models for the detection of eight classes of skin lesions are examined.
arXiv Detail & Related papers (2021-01-11T10:58:36Z) - Improving Lesion Detection by exploring bias on Skin Lesion dataset [0.0]
The ISIC Archive is one of the most used skin lesion sources to benchmark deep learning-based tools.
Deep learning models could classify skin lesion images without clinically meaningful information in the input data.
We performed experiments that generate shape-preserving masks instead of rectangular bounding-box based masks.
arXiv Detail & Related papers (2020-10-04T05:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.