論文の概要: Application of Large Language Models to Quantum State Simulation
- arxiv url: http://arxiv.org/abs/2410.06629v1
- Date: Wed, 30 Oct 2024 07:46:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 04:39:35.499102
- Title: Application of Large Language Models to Quantum State Simulation
- Title(参考訳): 大規模言語モデルの量子状態シミュレーションへの応用
- Authors: Shuangxiang Zhou, Ronghang Chen, Zheng An, Shi-Yao Hou,
- Abstract要約: 現在、様々な量子シミュレーターが研究者に強力なツールを提供しているが、これらのシミュレーターで量子進化をシミュレートすると、しばしば高コストが発生する。
本稿では、1量子ビットと2量子ビットの量子シミュレータモデルを構築し、複数の量子ビットに拡張し、最終的には3量子ビットの例を実装する過程を詳述する。
本研究は,LLMが量子ビット間の進化パターンを理論的出力状態と比較して最小限の誤差で効果的に学習し,予測できることを実証する。
- 参考スコア(独自算出の注目度): 0.11666234644810894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers leverage the unique advantages of quantum mechanics to achieve acceleration over classical computers for certain problems. Currently, various quantum simulators provide powerful tools for researchers, but simulating quantum evolution with these simulators often incurs high time costs. Additionally, resource consumption grows exponentially as the number of quantum bits increases. To address this issue, our research aims to utilize Large Language Models (LLMs) to simulate quantum circuits. This paper details the process of constructing 1-qubit and 2-qubit quantum simulator models, extending to multiple qubits, and ultimately implementing a 3-qubit example. Our study demonstrates that LLMs can effectively learn and predict the evolution patterns among quantum bits, with minimal error compared to the theoretical output states. Even when dealing with quantum circuits comprising an exponential number of quantum gates, LLMs remain computationally efficient. Overall, our results highlight the potential of LLMs to predict the outputs of complex quantum dynamics, achieving speeds far surpassing those required to run the same process on a quantum computer. This finding provides new insights and tools for applying machine learning methods in the field of quantum computing.
- Abstract(参考訳): 量子コンピュータは量子力学の独特な利点を利用して、ある種の問題に対して古典的コンピュータよりも加速する。
現在、様々な量子シミュレーターが研究者に強力なツールを提供しているが、これらのシミュレーターで量子進化をシミュレートすると、しばしば高コストが発生する。
さらに、量子ビットの数が増加するにつれて、資源消費は指数関数的に増加する。
本研究の目的は,Large Language Models (LLM) を用いて量子回路のシミュレーションを行うことである。
本稿では、1量子ビットと2量子ビットの量子シミュレータモデルを構築し、複数の量子ビットに拡張し、最終的には3量子ビットの例を実装する過程を詳述する。
本研究は,LLMが量子ビット間の進化パターンを理論的出力状態と比較して最小限の誤差で効果的に学習し,予測できることを実証する。
指数関数的な数の量子ゲートを含む量子回路を扱う場合でも、LLMは計算的に効率的である。
以上の結果から,LLMによる複雑な量子力学の出力予測の可能性を強調し,同じ処理を量子コンピュータ上で実行する速度をはるかに上回る速度を達成した。
この発見は、量子コンピューティングの分野で機械学習手法を適用するための新しい洞察とツールを提供する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Quantum Digital Simulation of Cavity Quantum Electrodynamics: Insights from Superconducting and Trapped Ion Quantum Testbeds [0.016994625126740815]
我々は、オープンなCQED物理を効率的に研究する量子コンピュータの可能性について、早期に検討する。
我々のシミュレーションでは、N$原子を含む一斉に励起されたTavis-Cummingsモデルの力学をマッピングする最近の量子アルゴリズムを用いている。
各ハードウェアプラットフォームにおけるゲートエラー,ノイズ,デコヒーレンスの影響を最小限に抑える。
論文 参考訳(メタデータ) (2024-04-05T02:25:49Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Towards practical and massively parallel quantum computing emulation for
quantum chemistry [10.095945254794906]
量子コンピューティングは初期の段階を超えて、化学・生物医学の商業的応用を模索している。
量子アルゴリズムを開発し、量子ハードウェアを検証するために、古典的なコンピュータ上で量子コンピューティングをエミュレートすることが重要である。
本稿では,行列積状態に基づく高性能かつ大規模に並列な量子固有解法シミュレータについて述べる。
論文 参考訳(メタデータ) (2023-03-07T06:44:18Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Scalable Simulation of Quantum Measurement Process with Quantum
Computers [13.14263204660076]
量子計測過程をエミュレートする量子ビットモデルを提案する。
1つのモデルは単一光子検出によって動機付けされ、もう1つはスピン測定によって動機付けされる。
我々はSchr"odinger cat-like状態を生成し、それに対応する量子回路を明示的に示す。
論文 参考訳(メタデータ) (2022-06-28T14:21:43Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - QuantumSkynet: A High-Dimensional Quantum Computing Simulator [0.0]
量子コンピューティングシミュレータの現在の実装は、2段階の量子システムに限られている。
高次元量子コンピューティングシステムの最近の進歩は、多層重ね合わせと絡み合いで動くことの可能性を実証している。
我々は,新しい高次元クラウドベースの量子コンピューティングシミュレータQuantumSkynetを紹介する。
論文 参考訳(メタデータ) (2021-06-30T06:28:18Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Distributed Quantum Computing with QMPI [11.71212583708166]
本稿では,分散量子アルゴリズムの高性能実装を実現するために,MPI(Message Passing Interface)の拡張を提案する。
量子MPIの試作実装に加えて,分散量子コンピューティングの性能モデルであるSENDQを提案する。
論文 参考訳(メタデータ) (2021-05-03T18:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。